2021 84

MO
00

22| sh&CH3] (KNOM Conf. 2021)

[e]
&, o7«

3

- O =lL=
5§ ek

quachhongnam1995@gmail.com, yeomsw0421@gmail.com, kyungbaekkim@jnu.ac.kr

Location—aware Multi—-Path Network Provisioning

Hong—Nam Quach, Sungwoong Yeom, Kyungbaek Kims*

Dept of Artificial Intelligence Convergence, Chonnam National University

Abstract

As the number of IoT and mobile devices grows and the concept of 5G technology becomes
more mainstream, various network infrastructures are expanding, and demand for customized
network services is becoming a hot trend. Also, the demands of request user—specific network
services are increasing along with the still restricted network infrastructure. Providing a guaranteed
QoS level to users' requirements necessitates taking into account the variety of factors that
influence network service efficiency, as well as complex network provisioning. In this paper, we
suggest a novel dynamic network provisioning scheme with multi-path planning. In this system, we
design a user request processor system that understands user—specific QoS specifications in order

to optimize network resource utilization.

I. INTRODUCTION

Nowadays, along with network infrastructure and
technology development, the demand for personalized
networks from users is increasing [1]. Besides, the
Covid—19 epidemic broke out, making it impossible for
people not to go out, leading to an ever—increasing
demand for internet use. The dynamic network
provisioning concept is a way to provide flexibility and
service customization in existing networks by sharing
network resources, which include both physical and
logical resources (e.g., computing, storage, etc.) among
different service providers. Moreover, location—aware
network provisioning allows dynamically generating a
subnetwork based on users' requested locations to
provide services that match particular needs [2]; users
can also input some service and network parameters
into their request [3]. However, when many users want
to use the network services with the exact location and
resources. The ISP needs to calculate for leveraging
their resource to provide the several different paths.
This helps them ensure available QoS and save the
operating expenses.

Recently, pathfinding in a location—-aware network
has been the subject of many studies in recent years.
For example, a method of best pathfinding using
Location—aware AODV (Ad-hoc On-demand Distance
Vector) for MANET (Mobile Ad-hoc NETwork) is

- 134 -

suggested in [4]. This paper used multiple parameters
such as node-ID, timestamp, GPS, bandwidth, RTT,
packet loss ratio, and others to modify an existing
protocol called AODV based on location to find the best
path among multi-path routing protocols for MANET.
On the other hand, the authors in [5], [6] proposed
online algorithms with an auxiliary graph for unicast and
multicast requests, including a bandwidth constraint
and maximized network throughput. However, these
studies do not consider the location—specific
information of user requests. For example, when the
students send requests to access the online classes in
university in their house, the ISPs should determine the
requested locations that students would use to make
the network their university location, instead of his
house's location. This paper suggested a dynamically
estimating network switch multi-path for location—
aware network provisioning to overcome this problem.
This supports the network provider could leverage
their resources and save cost operation.

II. METHODOLOGY

This section suggested a method for estimating
network switch multiple—path based on the user has
requested locations. We use our proposed device
architecture based on [2] in this paper. After that, we
suggest two extensive new features. The web user
interface, which is designed to allow several users to

2021

te

ofm
r=
[m}

0.
oo
r
il

submit their requests simultaneously. Second, we add
the Network Path Calculator module, which calculates
suitable switch multi-paths to accept as many user
requests as possible.

A. Web application interface for obtaining the location
requests

This section explains the web application, enabling
users to send location requests and sending them to a
central server for processing, as shown in Fig. 1. A
map-based selector-region Web Ul is shown in the
diagram below. A user may select locations and
determine the appropriate QoS level using network
parameters such as bandwidth and delay. Then, the
location of selected regions, which are expressed with
the ID and the parameter of coordinates. These pieces
of information are stored in the database and import
into the CSV file.

Adjustment Grid-based for Region Selector

Location: Lat . Lougt_cast,
|| Lati_south. Longi_west (csv file).

3
Regions LocationCoordinates

Lati_north Longti_east Lati_south Longti_west

54 35.1375 1267900 | 351125 1267900

57 351375 126865 | 351125 | 1268650

103 352125 1268150 | 351875 | 1268750
106 352125 1268900 | 351875 | 1268900

Figure 1°. Web-UI with several selected location by a
user

B. Multi-path calculation

This paper uses an algorithm to identify all network
devices that cover the requested locations to create a
subnetwork based on the requested locations. The
algorithm analyses each area to see if it belongs to a
switch's cover field. Finally, the algorithm returns a list
of devices to build the subnetwork.

Regions Location Coordinates
D Lati_north Longti east Lati_south Longti west
54 35.1375 126.7900 35.1125 126.7900
35.1375 126.8650 35.1125 126.8650
352125 126.8150 351875 126.8750

352125 126.8900 35.1875 126.8900

Lati_ | Longd
south west

- - 8 6 S
s 351375 12679 350125 126765 sl 8 a ®

List of selected switches (Sg)

$3 351375 126865 351125 12684

S7 351875 126815 351625 12679

s9 351875 12689 351625 126.865

Databasc |

Figure 2 Model of Location—awareness

Users can select locations through a map interface
that corresponding with switches connections in the
below layer. Two tables contain the ID and necessary

-135-

at=Ii3| (KNOM Conf. 2021)

coordinates from the user-requested location and
covered regions of selected switches.

Algorithm1: Mapping and find the corresponding switches cover selected regions

INPUT: The list of coordinates of selected regions
OUTPUT: List of switches cover selected regions St ,
Step 1: Get the and extract out the location coordinates
The List location of request: Lg = {ly, [5,... [}
11 = (lat.ne, Ing.ne, lat.sw, Ing.sw)
Step 2: Get the information of resource switches in the DB
The resource Switches: S = {sq, s,... S}
s1 = (reg.lat.ne, reg.Ing.ne, reg.lat.sw, reg.Ing.sw)
Step 3: Compare:
For each s € S do
For each / € Ly do
If;
Llatne <s.reg.latne &&
lIngne <s.reg.Ingne &&
Llat.sw <s.reglat.sw &&
lIng.sw <s.reg.Ing.sw then
Sp,-add(s)
End if
End for
End for

—List of cover switches: SL,

We created a location—awareness model in which a
module uses an algorithm to identify switches with a
cover region that contains at least one requested usage
location. After that, the Network Path Calculator
creates the sub—network topology using the list of
switches identified by the location-awareness model
and algorithm 2. The procedure "Mapping and finding
the corresponding switches cover selected regions" in
Algorithm 1 illustrates our deployment for the model of
location—awareness. In algorithm 1, two processes: Get
and extract locations which return a list of selected
locations (Step 1), and get the list switches that return
a list of resources switches (Step 2). Next, the
algorithm checks and compares if at least one
requested position (Area) into the cover region of that
switch (Step3) exists for each switch. Finally, the
algorithm returns a list of the corresponding switches
covering selected regions. This list of cover switches
forwarded to the path calculator to find the routes to
build a sub—network topology to provide the customers'
network services.

We assume that all link connect switches are of the
same quality. Many paths to connect all switches in the
selected list and make a subnetwork that covers the
user has requested locations. The Network Path
Calculator deployed the Dijkstra algorithm to find
effective routes to create a subnetwork that uses the
shortest paths between each intermediate device pair.
In other words, it is the active path in the subnetwork.
Then, we bring all of the shortest paths together to
create a dynamic route used by default.

In the above part, we have designed a system for
connecting all of the devices selected. However,

2021 SLY2EHE

several scenarios in reality that cause lead to the path
may not operate effectively, such as one or more
connections in this subnetwork are overloaded or
malfunctioning connections occur. For example, when
so many users request a set of the same switches with
different bandwidth, users simultaneously transfer their
data in the same subnetwork. This leads links in the
subnetwork to become overloading.

This paper deploys the algorithm to find other paths
to overcome this issue, which are the alternative routes
for the shortest path with similar constraints. We
assume the traffic load of the network is set up and
define the following:

The traffic load information of each link:

T(used) = Z{c BW;

(required)
The remaining traffic load information of a link:

T(remain) = T(ariginal) - T(used)

Where:

Tluseay - the traffic load was used by users in a link

BW; : the bandwidth requirement of the user i"in

(required) :

the all k users send requests

Tloriginany - the traffic load is set up initially on each
link

Algorithm 2: Finding the alternative paths

INPUT: Set of the selected switches Sg
OUTPUT: Set of the paths to connect the switches in Sp
Procedure: Sg = {Pg, } pair of switches in Sg
Step 1: Check the current traffic information in network
Step 2: Choose any Pg, in Sk and find the route to connect
Step 3:In Pg,, from the source switch, select the neighbor device.
Step 4: If the link between source and neighbor device have remained traffic.
Compare the remain traffic with bandwidth require.
If BW(requireay < T(remain)
Add it to expected path
If the link between source and neighbor device have remained traffic.
Compare the remain traffic with bandwidth require.
If BW(requirea) < T(originar)
Add it to expected path
Step 5: Repeat the step 4 until to reach the destination.
If not, return no path is found

Step 6: Perform similarly with next other pair in Pg,

Finally, we calculate a set of alternative paths, and
after combining these routes, we make a table, which
contains the shortest paths for the user.

III. EVALUATED
A. Setting Environment

To conduct the test, we built a virtual machine on
VMware with the Operating system Ubuntu 20.04.0.2
LTS. Also, we deploy the framework by using

-136 -

at=Ii3| (KNOM Conf. 2021)

Python2.7, MySQL. To support the framework, we
designed and implemented the Web-UIl by using
socket.io, node.js, and HMTL. We use the editor
Visualcode to build the code of the framework and
Mininet to build the environment,

Environment Configuration
Operating system Ubuntu-20.04.2.0 LTS
Memory RAM 8GB

Programming language Python 2.7, NodelS, HTML

Libary Python 2.7 Libary
Database MySQL server
Simulator Mininet 2.2.0
Protocol OpenFlowl.3

Table 1 Experimental environment configuration.

In this paper, the experiment is conducted several
experiments with various network settings using the
mininet to evaluate the proposed method. Then, we
measure the number of accepted requests and
accumulate bandwidth. In these experiments, we set up
switch network size in 13 nodes, and each network link
has a bandwidth capacity in the range of 100 ~ 1000
Mbps and 2~bms delays. Also, we randomly pick 20%
of devices in a request and randomly choose the start
time and usage duration. The QoS parameter of a
request includes bandwidth constraint (1~10Mbps) and
delay constraint in range (40ms ~ 200ms).

Performing experiments with the Web—-UI helps the
customers give the requirements about location, QoS
constraints as bandwidth, and delay. The experiments
assume the number of requests from users will become
in our framework frequently and continuously. We
generated requests with the experiments, such as 10,
20, 30, 50, and up to 500 requests to conduct this
assume. Based on the location parameters of these will
be handled to find the corresponding switches
resources. We then used the QoS constraint of these
requests to find the shortest path fitting each request.
To evaluate our proposed method's performance, we
offer the Dijkstra algorithm to compare.

B, Analysis, Evaluate Results

Our proposed method is evaluated with the network
with topology size 13 switches, and the number of
requests increases up to 100 while other parameters
are fixed. Fig.3 plot the performance curves of two
different methods from which it can be seen that the
proposed method outperforms Dijkstra in all cases.

Specifically, at the very first simulation time, when
the number of requests is relatively small (less than
50), the number of accepted requests seems to be the

2021 S4L2822] e=0ig| (KNOM Conf. 2021)

same

Number of Accepted Requests

e Dijkstra e Suggested method
160
140

120

80
60

40

Number of acceped requests

20

10 20 30 50 100 200 500
Number of total requests

Figure 3 The number of accepted requests

between the two methods. However, as the number of
requests grows, our proposed approach accepts a
slightly higher number of requests than the other, up to
1.5 times at the end of the simulation. In other words,
when more requests come into the system, more
requests can be accepted more than the other, as Fig.3.
With Dijkstra, when the network resource serves a
request, Dijkstra cannot use it for other requests until
its duration finishes. However, with the proposed
method, the network resource can be shared by several
requests within an expected certain amount of time
them. Furthermore, the suggested method also finds
alternative paths that can fit the user request's QoS
constraints

The accamulate bandwidth

e Djjkstra e Suggested method

700

600

500

400

300

The accamulate bandwidth

200

100

10 20 30 50 100 200 500

Number of requests

Figure 4. The accamulate bandwidth

Besides, Fig. 4 shows that our proposed approach
provides more cumulative bandwidth than the Dijkstra
method, despite the difference being very minor due to
our simulation network resource constraints. However,
we recognize that when the number of requests
increases from 200 to 500 at the end of the simulation.
The proposed method's cumulative bandwidth
decreases more diminutive than the Dijkstra method.
The explanation for this is that while the Dijkstra
method resource is saturating, the proposed method
can accept more requests whose QoS requirements are
negligible.

-137 -

IV. CONCLUSION

In this paper, an approach is proposed that is a
framework that includes a web—-UI to gather users'
requests. The server responsible listens, obtains, and
handles the request, which is continuously maintained.
This server supports network resources' deployment,
finds the routes that respond to user's requests, and
creates subnetwork topologies that match the offers'
requirements. The server also monitors the network
operation to gather, analyze, anticipate, avoid, and
respond to network incidents. We are trying to enhance
network provisioning performance in the number of
accepted requests and QoS constraints and extend the
experiment to measure the average bandwidth and
delay to evaluate the proposed method's performance.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of Science
and ICT), Korea, under the ITRC(Information Technology
Research Center) support program(IITP-2021-2016-0-
00314) supervised by the IITP(Institute for Information &
Communications Technology Planning & Evaluation). This
results was supported by "Regional Innovation Strategy (RIS)"
through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education(MOE).

References

[1] Wellman, Barry. "Physical place and cyberplace: The rise
of personalized networking." International journal of urban
and regional research 25.2 (2001): 227-252.

[2] Van—-Quyet Nguyen, Sinh-Ngoc Nguyen, Deokjai Choi,
Kyungbaek Kim. "Location—aware Dynamic Network
Provisioning," In Proceedings of the 19th APNOMS, 2017.

[3] Gde Dharma N., Van-Quyet Nguven, Tiep Vu Duc, Ngoc
NguyenSinh, Alvin Prayuda J.D., Kyungbaek Kim, Deokjai
Choi "Design of Service Abstraction Model for Enhancing

Network Provision in Future Network," In Proceedings of
the 18th APNOMS, 2016.

[4] Anagha Raich, Amarsinh Vidhae. "Best Path Finding using
Location—aware AODV for MANET," International Journal
of Advanced Computer Research Volume 3, Num3,
pp.336-340, Sep. 2013.

[5] M.Huang et al., "Dynamic routing for network throughput
Maximization in Software-defined networks," in
Proceeding of IEEE INFOCOM, USA, 2016, pp. 1-9

[6] Mike Jia, W.Liang, M.Huang, Z.Xu, and Yu Ma, "Routing
Cost Minimization and Throughput Maximization of NFV-
enabled Unicasting in Software—defined networks," IEEE
Transaction and Network service Management, vol. 15,
no. 2, pp. 732-745, June 2018.

