
DYNATOPS: A Dynamic Topic-based Publish/Subscribe
Architecture

Ye Zhao
Dept. of Information and

Computer Science
University of California, Irvine

yez@uci.edu

Kyungbaek Kim
Dept. of Electronics and
Computer Engineering

Chonnam National University,
South Korea

kyungbaekkim@jnu.ac.kr

Nalini
Venkatasubramanian
Dept. of Information and

Computer Science
University of California, Irvine

nalini@ics.uci.edu

ABSTRACT
Emerging societal scale notification applications call for a
system that is able to efficiently support simple, yet changing
subscriptions for a very large number of users. In this paper
we propose DYNATOPS, a dynamic topic-based pub/sub
architecture that provides efficient scalable societal scale
event notifications for dynamic subscriptions via distributed
broker networks. In DYNATOPS, users are moderately repo-
sitioned on brokers and brokers are moderately repositioned
on the overlay structure for efficient event notifications, to
adapt to the publications and subscription dynamics. In
contrast to existing self-organized techniques, the broker
network reconfiguration in DYNATOPS is executed in a
planned manner utilizing a cost-driven reconfiguration pro-
cess. With extensive experiments, we observe that under
highly dynamic subscriptions DYNATOPS can still main-
tain an efficient dissemination structure that provides 30%
less notification delay and overhead in general, and a re-
configuration cost reduction of 80% as compared to other
state-of-the-art systems.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

Keywords
topic based, publish/subscribe, dynamic subscriptions

1. INTRODUCTION
The recent years have witnessed the growth of societal

scale notification systems that have penetrated multiple as-
pects of our day-to-day life. Key examples include mobile
social networks (e.g. Twitter and Foursquare), geomarket-
ing (e.g. shopalerts.att.com), traffic and weather alerts (e.g.
www.wunderground.com and weather.gov), emergency re-
sponse (e.g. www.gdacs.org/alerts and www.mywarn.com),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.
Copyright 2013 ACM 978-1-4503-1758-0/13/06 ...$15.00.

etc. These systems are large (e.g. Twitter is estimated to
reach 500 million users in 2012 and currently handles over
340 million tweets daily), geographically distributed and
largely subscription based. The notion of subscriptions in
such systems is often simple, and instantiated by an aver-
age citizen – deals for local shops, traffic alerts for freeways,
weather conditions for zipcodes, and location check-ins from
friends. Moreover, we observe an emerging trend that the
interests of such users, i.e. subscriptions, are short lived (du-
ration of minutes or hours) and change dynamically based
on users’ locations or contexts.

For instance, mobile subscribers are often interested in
events and information within their immediate vicinity; the
dynamically changing location is a key aspect of what consti-
tutes a subscription and consequently a relevant notification
in this case. In disasters (e.g. earthquakes), people’s infor-
mation needs (i.e. subscriptions) change with the evolution
of the disaster event (e.g. pre-disaster or post-disaster). An
individual’s region of interest, i.e. subscription, changes as
he/she moves into or out of disaster region; people are anx-
ious to check the safety of their beloved ones and the chang-
ing locations or statuses of families or friends cause subscrip-
tion changes as well. Such shifts in notification needs calls
for a system that is able to efficiently support simple, yet
changing subscriptions for a very large number of users.

Publish/subscribe has for long been a popular commu-
nication paradigm to provide customized notifications to
users in a distributed environment due to its loose cou-
pling between the information providers (i.e. publishers)
and consumers (i.e. subscribers). Pub/Sub systems are
either content-based where subscribers receive notifications
when the content of the message matches their interest [6,
35, 32, 8, 16] or topic-based [30, 40, 36, 20] when the “topic”
of the publication matches their interest.

One of the main incentives for content-based pub/sub is
to enable delivery of relevant and meaningful notifications
through rich and expressive subscription languages. Here,
sophisticated subscription management strategies are usu-
ally required to determine matching subscribers and subse-
quently route only the relevant events; runtime overheads
for subscription insertion/removal and event matching are
much higher than topic-based implementations [5, 34, 28].
Over the last decade, significant progress has been made in
the design of pub/sub systems to address scalability and ef-
ficiency of content-based pub/sub [28, 13, 21, 14, 22], largely
motivated by the needs of enterprise systems. The design
of pub/sub systems taking into account frequently chang-

75

ing subscriptions is beginning to receive interest, especially
in the context of content-based pub/sub systems where the
emphasis is on designing novel subscription languages and
schemas. For example, [28] proposed a parametric subscrip-
tion language in content-based pub/sub systems to reduce
broker runtime complexity in the event of a subscription up-
date. The key idea is to insert variables into subscriptions
which may be updated frequently so that only variable up-
date is performed during subscription update. Techniques to
manage the overheads due to event matching and dynamic
subscription updates are however still a concern.

We conjecture that a topic-based pub/sub system can
form the basis of an efficient architecture to deal with the
simple, yet changing notification needs of a large number of
users; for example by routing events through group multi-
cast to peers that match subscription topics. Subscription
insertion/removal and event routing on a broker can be eas-
ily done in O(1) time. Indeed, topic-based pub/sub systems
have been widely deployed in contexts where events divide
naturally into groups (i.e. “topics”) and efficient information
notification is demanded [23, 9]. More recent topic-based
pub sub systems, e.g. Twitter, have scaled to a very large
number of users.

In this paper, we propose DYNATOPS, a novel topic-
based pub/sub system that provides efficient scalable event
notifications for dynamic subscriptions. To enable rapid no-
tifications that can scale to the societal level, in the DY-
NATOPS system (Section 3), users connect to a distributed
broker network that is built on top of a structured overlay
for subscription management and publication distribution.
DYNATOPS incorporates two unique broker management
mechanisms to address subscription dynamicity. First, it
uses a similarity-based user placement (Section 4) tech-
nique to map DYNATOPS users to nearby brokers. Under
fast changing subscriptions such as those caused by chang-
ing locations of users, conventional user placement policies
show a dramatic increase in their subscription management
overhead. The proposed technique efficiently groups users
sharing similar interests to be managed by the same set of
brokers, to effectively alleviate the overhead with regard to
subscription updates among brokers. Our experimental re-
sults (Section 6) indicate over 40% reduction in brokers’ sub-
scription management overhead as compared to other state
of the art techniques under highly dynamic subscriptions.

Second, more importantly, to provide efficient event no-
tifications, DYNATOPS incorporates a broker reconfigura-
tion process (Section 5) that is both subscription and
structure-aware. Unlike existing topic-based pub/sub sys-
tems where topology changes are triggered in a self-organizing
manner to reflect subscription changes, we propose a cost-
driven reconfiguration process that changes topology in a
planned manner. The key intuition behind our approach
is that reconfiguration of the broker network is achieved by
merely moving broker nodes to positions in an overlay struc-
ture where routing is already highly optimized - this reduces
the effort for reconfiguration in a large scale system. Fur-
thermore, we trigger the reconfigurations only when they are
likely to have high utility. The combination of these strate-
gies allows us to reduce notification delay and overhead by
30%, and reduce the cost of reconfiguration by over 80% as
compared to other state of the art techniques under highly
dynamic subscriptions (Section 6).

2. RELATED WORK
Conventional pub/sub systems assume that clients join

the broker environment in one of the following ways: (a)
connecting to any broker with no restrictions [27, 35], or (b)
connecting to the closest broker [16, 24, 29]. [7] is the first
to investigate client placements that optimize delivery delay
and system load. However, the work focused on the place-
ment of a few known publishers under fixed subscribers’ sub-
scriptions and broker overlay topologies. Such schemes are
inefficient in societal scale notification applications where (a)
publishers are many (in general the entire user set) and (b)
subscriptions change frequently based on user interests. In
this paper, we explore a similarity-based user placement that
takes into account both the dynamics of user subscriptions
and broker load. The proposed technique can effectively
reduce subscription management overhead and improve no-
tification efficiency under dynamic subscriptions of users.

Building and reconfiguring overlay networks that take into
account nodes’ subscriptions for dissemination efficiency has
been explored in both content-based and topic-based pub/sub
systems. In content-based paradigm, Sub-2-Sub [39] is a
content-based protocol that clusters nodes according to their
subscriptions to construct a ring for each attribute. [37] pro-
posed a self-organizing algorithm to cluster brokers that sup-
posedly will be target for the same events in the near future.
[43] discussed primitives that reconfiguration protocols need
to implement to ensure high availability with minimum dis-
ruption under topology changes. In topic-based paradigm,
many recent topic-based pub/sub systems [38, 42, 20, 36,
31, 19] build and maintain their overlays based on bro-
kers’ subscriptions. For rendezvous-based pub/sub systems
that maintain topic-routing trees, Magnet [38] clusters nodes
with similar subscriptions on a skewed DHT, and explores
a customized routing to reduce the number of relay nodes
in the multicast trees. When a node’s subscription changes,
the node needs to rejoin the DHT to be placed onto a new
position based on its new subscription. On the other hand,
[42, 20, 36, 31, 19] build relay-free overlays without topic
rendezvous and explore gossip-based dissemination and/or
in-cluster flooding to disseminate event notifications. Tera
and StAN [36, 31] creates dedicated topic overlays for each
topic. A node joins overlays for the topics that it subscribes
to by connecting to a node already in the overlay. SpiderCast
and TCO [20, 19] build a single unstructured overlay that
strives to maximize clustering of nodes according to their in-
terest in topics. The focus of system is to keep low node de-
grees while maintaining the topic-connected property as the
foundation of the relay-free routing. This is achieved by the
neighbor maintenance routine in SpiderCast and the overlay
construction algorithm in TCO, both of which can trigger
an overlay topology reconfiguration when a node’s subscrip-
tion changes. PolderCast [42] maintains a ring structure for
each topic and combines deterministic dissemination over
a ring with probabilistic dissemination similar to gossiping.
Its overlay management mechanism also triggers topology
updates whenever node churns or subscription changes.

While all the above systems trigger topology changes to
reflect subscription changes in a self-organizing manner, in
this paper we design DYNATOPS with a different philoso-
phy. We argue that in societal scale notification applications
where subscriptions are short lived and frequent change is
the norm, the topology reconfiguration should be incorpo-
rated in a more systematic and planned manner in the sys-

76

Figure 1: DYNATOPS system overview

(a) overlay before reconfigura-
tion

(b) overlay after reconfigura-
tion

Figure 2: example of broker network reconfiguration

tem design. This is to reduce the reconfiguration overhead
from frequent subscription changes that we already know
will happen. This is achieved through built-in mechanisms
that detect when sufficient changes have occurred and that
deal with those changes through planned overlay reconfigu-
rations. We design a cost-driven reconfiguration process that
detects when sufficient changes have occurred and deals with
those changes through planned overlay reconfigurations that
are likely to have high utility.

3. DYNATOPS OVERVIEW
Figure 1 shows the DYNATOPS system where pub/sub

users connect to brokers for topic subscriptions and event
publications. To provide scalable and efficient pub/sub ser-
vices, DYNATOPS maintains a broker network based on
structured overlays (e.g. Chord DHT [25]); Brokers are
configured onto the overlay as overlay nodes with unique
nodeIDs. Similar to [30, 40], DYNATOPS constructs a
Rendezvous-based broker network and maintains indepen-
dent topic routing trees to route event messages of different
topics: each topic has a Rendezvous Point (RP), which is
an overlay node responsible for the hashed key of the topic
name in the DHT, and the RP serves as the root of the
corresponding topic routing tree. Every broker determines
which trees to join based on the subscriptions of users that
connects to it. A broker must join the topic tree when at
least one of its users subscribes to the topic, and leaves the
tree when all of them unsubscribe to minimize notification
overhead. For convenience, we use “broker subscribes to the
topic” to refer to the first case and “broker unsubscribes to
the topic” to refer to the second case. A topic routing tree

spans all brokers that subscribe to the topic and it is created
in a top-down fashion such that the routing path from the
root to each of the brokers in the tree is consistent with the
default routing path by the underlying key-based routing al-
gorithm. An example of topic routing tree using Chord is
shown in Fig. 2a. There are 8 brokers uniformly placed into
the structure with their mapped IDs shown on the ring. We
considered 2 topics t1 and t2, and they are hashed to IDs
1 and 4 respectively. Each broker is interested in only one
topic. The arrows in the ring indicate the topic routing tree
for t1 based on the routing table of each broker (we only
show one of them in the figure). For event publications, the
published messages are first forwarded from publishers to
their topic RPs. Then the RP nodes disseminate the mes-
sages along the topic routing trees to every single broker
that subscribes to the topic.

3.1 Dynamic Mappings
The centerpiece of the DYNATOPS system are two ef-

ficient dynamic mapping algorithms in response to users’
and brokers’ dynamic subscriptions: 1) a simple distributed
similarity-based user placement algorithm that maps pub/sub
users to pub/sub brokers; 2) the DYNATOPS broker net-
work reconfiguration algorithm running on a Reconfigura-
tion Manager to manage the broker network structure (i.e.
mapping of brokers to overlay nodes in logical space).

The reconfiguration manager is a logically centralized en-
tity that monitors the pub/sub environment, e.g. rates of
event publications and subscription changes at brokers, and
intelligently adapts the broker network structure for fast and
efficient event notifications. It only communicates with bro-
kers periodically with minimal message overhead. To allevi-
ate the concern that the reconfiguration manager may pose
a bottleneck or a single point of failure, it can be distributed
over multiple servers using a distributed overlay similar to
that proposed in our earlier implementations [1].

The aim of the user placement algorithm is to reduce
brokers’ subscription changes so as to reduce subscription
management overhead and alleviate the demand for broker
network reconfiguration (described later) when the pub/sub
users’ subscriptions are dynamic. This is done by dynami-
cally aggregating users with similar subscriptions to be man-
aged together by the same set of brokers.

However, as brokers’ subscription change topic routing
trees in rendezvous-based pub/sub may involve unrelated
relay brokers that are not themselves interested in the topic
but that reside on the routing path from the root to sub-
scribed brokers (see example in Figure 2a). The unrelated
relay brokers cause excessive delay and overhead in event
notifications. Our aim is to eliminate/reduce the unrelated
relay brokers. In DYNATOPS we explore the possibility of
dynamically altering the broker network structure to match
the underlying (possibly changing) subscription needs - i.e
a Structure and Subscription aware Broker Reconfiguration
(SSBR) to map brokers to overlay nodeIDs. The goal of
the reconfiguration is to intelligently adapt the broker net-
work based on updated pub/sub environment to construct
efficient topic routing trees. Figure 2b shows an example il-
lustrating how DYNATOPS reconfigures the broker network
for efficient event notifications based on updated broker sub-
scriptions. We can see that before reconfiguration, event
notification in t1 takes 3 unrelated relays (Broker C, D and
F are not interested in the topic 1), and 3 maximum hops

77

(Broker A receives the published event after 3 hops). After
reconfiguration, the tree changes along with the change of
the mapping and of the routing table on each broker. Note,
the topic trees are still constructed following the basic rout-
ing rules of Chord. For t1, the unrelated relays becomes 0
and the maximum hop becomes 1 after reconfiguration.

Figure 3 shows the system architecture for DYNATOPS
broker network reconfiguration. DYNATOPS brokers han-
dle the publications and subscriptions from its pub/sub users
through the pub/sub manager component. They also peri-
odically report their pub/sub states (e.g. number of publi-
cations and subscription summaries) to the reconfiguration
manager. Based on the received information, the reconfigu-
ration manager performs a cost-driven reconfiguration com-
putation to seek a balance between potential performance
improvement and reconfiguration cost from the network re-
configuration. The reconfiguration manager then coordi-
nates the overlay structure configuration with the structure
manager component on each broker through its configura-
tion controller component.

Figure 3: DYNATOPS Broker System Architecture

4. USER PLACEMENT STRATEGY
The core of our user placement strategy is a grouping al-

gorithm that takes as an input the location and subscription
of a user, and outputs the broker that is responsible for host-
ing the user’s subscriptions. The goal of the algorithm is to
ensure that users with similar subscriptions are grouped and
managed by the same set of brokers. The grouping of sim-
ilar users brings two benefits to the pub/sub system. First,
it minimizes the subscription management overhead at bro-
kers. Subscription management overhead incurs in topic-
based broker networks when brokers’ subscriptions change.
The intuition here is that by clustering similar users each
broker subscribes to topics that interests all/most of the
users it hosts, so that the subscription states of the brokers
are more stable and less dependent on a single user’s sub-
scription changes. Furthermore, when a user subscribes to
a new topic, it is more likely that the topic has also been
subscribed by users with similar interests, so that the topic
has been subscribed by the broker hosting the user.

Second, it reduces the potential number of brokers that re-
quire to subscribe to each single topic. In rendezvous-based
pub/sub implementations, the number of brokers subscrib-
ing to a topic directly reflects to the size of the topic routing
tree and subsequently impacts on the event notification de-
lay and overhead on the specific topic. This is particularly
true for DYNATOPS because the broker overlay is config-
ured to eliminate/reduce unrelated relay brokers in topic
routing trees so that the tree size is more dependent on the
number of brokers subscribed to the topic.

Algorithm 1: User Join Protocol

(1) the user sends the join request to a random broker he
knows during bootstrap with its subscriptions. In the case
that the user has a connected broker already but changes its
subscriptions, the join request is piggybacked to the
subscription change message.
(2) the requested broker calculates the user-broker utility
Utilu,b for all its visible brokers (explained later).
(3) the requested broker replies to the user with the broker
ID (address) that yields the largest utility value in the last
step.
(4) the user joins the system by connecting to the selected
broker.

Let P denote the set of topics, we evaluate the similarity of
random user u to broker b in their subscriptions su, Sb ⊆ P
by a user-broker similarity metric, Simb,v, which is defined
as the normalized size of their intersection, in the range [0, 1].
Formally, Simb,v = |Sb ∩ sv|/|sv|. Our scheme is flexible
and can accommodate other similarity metrics (e.g. Jac-
card similarity), however, their analysis is out of the scope
of the paper. Similarity based user placement will select for
each user u a hosting broker that yields the highest user-
broker similarity among all brokers. However, user place-
ment based only on similarity metrics may result in severe
load imbalance at brokers, especially when users’ subscrip-
tions are highly skewed (e.g. when most users only subscribe
to a few very popular topics). That is, a few brokers have
to host the majority of users due to high similarity of their
subscriptions. Hence, to alleviate load imbalance, we also
take into account a load metric, Lb, to reflect the load level
of a broker, with range [0, 1]. In this work we assume homo-
geneity of brokers and define broker load as the normalized
amount of local user subscriptions managed by a broker.
Formally, Lb =

∑
u∈Ub

|su|/∑u∈U |su|. A user-broker util-
ity combining the similarity and load metrics is defined as
Utilu,b = Simb,u − wl · Lb, where wl is the relative weight
for the load metrics.

The crux of user placement is the user join protocol which
is executed every time a user subscribes to a new topic, or
unsubscribe an existing topic. We present the join protocol
in Algorithm 1.

Ideally the grouping algorithm requires each broker to ac-
quire the global information on the subscriptions and loads
of other brokers. This will incur significant overhead when
the network size is large. This message overhead is consid-
ered as part of the subscription management overhead in
DYNATOPS. Hence, we explored two techniques to avoid
excessive overhead: 1) instead of maintaining the real-time
state of subscriptions and loads of other brokers, each DY-
NATOPS broker only updates the information every Tupdate

period; 2) we explored a clustering technique to divide bro-
kers into clusters and only let brokers in the same cluster
exchange the subscription and load information. When a
user joins, the broker running the algorithm only evaluates
utilities for brokers from the same cluster. We show in our
experimental evaluation that a small cluster size (e.g. 10
brokers in a cluster) is good enough for the grouping algo-
rithm to outperform existing techniques.

78

5. COST-DRIVEN BROKER NETWORK RE-
CONFIGURATION

DYNATOPS aims to reconfigure the broker network to
minimize event notification overhead and delays. We pro-
vide a formal modeling of the notification performance met-
rics and use it to drive the broker network reconfiguration
process.

Let B denote the set of brokers, and G(V,E) denote the
structured overlay topology that DYNATOPS builds its bro-
ker network atop. A vertex v ∈ V is an overlay node with a
fixed nodeID. This corresponds to a fixed node position in
the overlay geometry too. Its edges to other vertices are links
to other overlay nodes. We assume |V | = |B|. DYNATOPS
configures the broker network by specifying the mapping of
the set of brokers B onto the set of overlay nodes V (i.e.
nodeIDs) in G(V,E). Therefore, we can define the configu-
ration as a mapping matrix, X = {xb,v}, between B and V ,
such that:

xb,v =

{
1 if broker b is mapped to overlay node v;
0 otherwise.

Let Sb be the subscriptions of broker b. In the rendezvous-
based pub/sub implementation, given the overlay configura-
tion X and S = {Sb : ∀b ∈ B} as the set of broker subscrip-
tions, the topic routing tree for each topic can be determined
easily. The tree is rooted at the topic rendezvous and spans
all overlay nodes whose mapped broker subscribes to the
topic.

To formalize the performance of the pub/sub system, we
formulate the event overhead , op, for an event in topic p
as the total number of forwarded messages required to dis-
seminate it from the RP to all brokers that subscribe to
topic p. This overhead can be divided into two parts: (a)
subscriber overhead , osubp , as the number of messages con-
sumed by brokers that subscribe to the topic; and (b) relay
overhead , orelayp , as the number of the messages consumed
by intermediate unrelated relays who have not subscribed
to the topic. Meanwhile, we formulate the broker event
delay , db,p, for an event in topic p to reach a specific sub-
scribed broker b as the delay to forward it from the topic
RP to that broker, and it can be easily approximated by
the RTTs between brokers during each hop along the path.
Given the set of brokers that subscribe to topic p, we formu-
late the event delay as the cumulative broker event delays
for all brokers in the set, as: dp =

∑
b:p∈Sb

db,p. Note that in
the above formulation we opt out the overhead and delay for
forwarding the event from its publisher to the RP. This is
because we assume any user in the system can be a potential
event publisher (regardless of his subscriptions) so that the
average path length from publisher to RP is independent of
broker network configurations.

To evaluate the performance of event notifications of the
pub/sub by taking into account events in all available topics
during a time span (t0, t0+T), we define cumulative relay
overhead and cumulative delay under a broker network
configuration X as follows:

Orelay
(t0,t0+T)(X) =

∑
p∈P

t0+T∑
τ=t0

δp(τ) · orelayp (τ) (1)

D(t0,t0+T)(X) =
∑
p∈P

t0+T∑
τ=t0

δp(τ) · dp(τ) (2)

where δp(t) is the number of events of topic p in time slot t,
and orelayp (t) and dp(t) are event relay overhead and event
delay of the topic routing tree in time slot t. Note that if
the brokers’ subscriptions are static during the evaluation
period, then all the topic routing trees are static, subse-
quently orelayp and dp are static and the above equations can
be rewritten as:

Orelay
(t0,t0+T)(X) =

∑
p∈P

N (t0,t0+T)
p · orelayp (3)

D(t0,t0+T)(X) =
∑
p∈P

N (t0,t0+T)
p · dp (4)

where N
(t0,t0+T)
p =

∑t0+T
τ=t0

δp(τ) is the total number of
events of topic p during the period.

Now we define our pub/sub performance metric during an
evaluation period (t0, t0 + T) under configuration X as the
Notification Cost , C(t0,t0+T)(X), as follows:

C(t0,t0+T)(X) = Orelay
(t0,t0+T)(X) + wd ·D(t0,t0+T)(X) (5)

where wd ≥ 0 is a relative weight of delay performance to
overhead performance.

5.1 Reconfiguration Process
A question needs to be answered is when and how the

broker network should be reconfigured. Since reconfigura-
tion is not cost-free – it may incur both management over-
head and potential disruption of event notifications, it is
not plausible to reconfigure the broker network whenever
subscriptions change on brokers. To avoid frequent recon-
figurations, we define reconfiguration free period, Tfree, as
the minimum period between two consecutive reconfigura-
tions in DYNATOPS. Intuitively, if the benefit of making
a reconfiguration cannot justify the cost of it, the broker
network should not be reconfigured. Every Tfree period,
DYNATOPS performs a cost-driven reconfiguration process
to evaluate the benefit of reconfiguration against its cost.

Let X be the broker network configuration before recon-
figuration, and X ′ be the new configuration. The benefit
of reconfiguration is evaluated as the gain in C(t0,t0+Tfree),
which reflects the efficiency of event notifications. Formally,

Bft(X,X ′) = C(t0,t0+Tfree)(X)− C(t0,t0+Tfree)(X
′) (6)

The cost of reconfiguration is the overhead associated with
the transition of the broker network from its old configura-
tion X to its new configuration X ′. We designed a reconfig-
uration protocol for efficient broker network transitions in
DYNATOPS. We formulate the reconfiguration cost as the
upper bound we derived for the message overhead of the pro-
tocol to reconfigure the broker network over a Chord DHT
(See Section 5.1.2 for the protocol and the discussion on its
overhead). Assume Γ(X,X ′) is the number of brokers that
have a different mapping in configuration X ′ compared to
X. The reconfiguration cost is:

Cst(X,X ′) =

⎧⎨
⎩

0 if X ′ = X;
O(|V |+ log2(|V |) · Γ(X,X ′)
+|P |log(|V |) · Γ(X,X ′)) otherwise.

(7)

79

Algorithm 2: reconfiguration process

Step1-online monitoring:
online monitoring the event publications and subscription
changes on brokers to estimate C(t0,t0+Tfree)

(X).

Step2-reconfigurability test:
fast judging the demand of broker reconfiguration from
C(t0,t0+Tfree)

(X). If demand is low, return to step1;

Otherwise, continue to step 3.
Step3-reconfiguration computation:
calculating X′ to maximize Bft(X,X′)− Cst(X,X′). If
Bft(X,X′) ≤ Cst(X,X′) return to step1; Otherwise,
continue to step4.
Step4-reconfiguration protocol:
coordinating the brokers to transit to X′.

Algorithm 2 shows the DYNATOPS reconfiguration pro-
cess that is periodically executed by the reconfiguration man-
ager.

The reconfiguration manager monitors and estimates the
rate of event publications as well as subscriptions to calcu-
late C(t0,t0+Tfree). We apply an exponential filter to esti-
mate publication rate in topic p for the next period from
the observation in current period:

R
k+1
pub (p) = (1− αpub)R

k
pub(p) + αpubR

k
pub(p) (8)

where R
k+1
pub (p) is the estimated publication rate in topic p

for the (k+1)th period, and Rk
pub is a monitored publication

rate for the (k)th period. αpub is the parameter for the filter.
In DYNATOPS we set αpub = 0.3.

Since it is hard to estimate the dynamics of brokers’ sub-
scriptions S(t) for each time slot t in the next evaluation
period (t0, t0 + Tfree), we simply consider a static S equals
S(t0) as an approximation. Better strategies could be con-
sidered by acquiring more context-awareness of the pub/sub
users.

The reconfigurability test aims to prune out unnecessary
reconfiguration computations when estimated reconfigura-
tion demand is low for the next reconfiguration free pe-
riod. The intuition here is that when the broker network
is already fairly optimized or the event notification cost is
low, the marginal benefit of reconfiguration won’t be able
to justify the cost of it. Hence, we compare the estimated
C(t0,t0+Tfree)(X) with a cost threshold to decide the ne-
cessity for reconfiguration computation. A reconfiguration
computation is desired only if it is larger than the thresh-
old. In this paper, we set the threshold to β·maxCst(X,X ′),
where maxCst(X,X ′) is the maximum possible reconfigura-
tion cost in the broker network by equation 7 and β > 0 is a
control parameter (we set it to 0.1 in our implementation).

5.1.1 Reconfiguration Computation
DYNATOPS performs reconfiguration computation to de-

termine optimal topology configuration X ′ that maximizes
Bft(X,X ′)−Cst(X,X ′). We prove in [4] that the problem
is NP-hard to solve. Instead of solving the problem directly,
we first present a sub-problem and propose an efficient al-
gorithm for the problem. We define the basic reconfigura-
tion problem without taking into account the reconfiguration
cost: Structure and Subscription aware Reconfigura-
tion (SSBR) as follows.

SSBR(G(V,E), S,N
(t0,t0+T)
p): Being aware of the overlay

structure G(V, E), brokers subscriptions S and N
(t0,t0+T)
p

as the number of event publications in each topic during a
period, solve the following optimization problem:

argmin
X

C(t0,t0+T)(X) (9)

where C(t0,t0+T)(X) is the notification cost defined in
equation 5.

The above problem is still NP hard unless we consider the
special case where only delay is considered (i.e. wd = ∞)
and delay between two brokers is strictly proportional to the
number of hops in the overlay (In this case, the problem can
be efficiently solved and an optimal solution is available).
We present a greedy algorithm with upper bound complex-
ity O(|P |2|V |2log(|V |)) (see [4] for proof) for the general
case. The algorithm iteratively improves the solution given
an initial broker network configuration. We call the algo-
rithm SSBR-Greedy and show it in Algorithm 3. In each
iteration, the algorithm explores the neighborhood Nb(X)
(we will define later) of the current best configuration X
and finds the best neighboring configuration that minimizes

the cost function in equation 5. Let X̃ ′ be the best among

X ′ ∈ Nb(X). If X̃ ′ is superior to X, then the best config-

uration moves from X to X̃ ′. Otherwise, a local optimal
configuration is reached and the algorithm stops. Each iter-
ation the algorithm finds a better configuration with a better
C(t0,t0+Tfree) than the one of last iteration. They form an
improvement path in C(t0,t0+Tfree). The algorithm returns
all the configurations found on the improvement path.

The neighborhood, Nb(X), of a configuration X is a set of
configurations that directly derivable from X. One immedi-
ate available neighborhood of X can be derived by swapping
the mapping in X of any two brokers. However, this neigh-
borhood contains |V |(|V | − 1)/2 configurations, leading to
great computational overhead for the algorithm to exam-
ine in each iteration. To improve the algorithm efficiency
for online computation, we examine a different yet smaller
neighborhood with only |V | − 1 configurations.

We introduce the concept of Broker SSBR Cost. The bro-
ker SSBR cost, cb evaluates each broker for their contribu-
tions to the total SSBR cost in equation 5. It consists of two
parts: broker overhead cost, cOb (X), and broker delay cost,
cDb (X). They are defined as follows:

cOb (X) =
∑
p∈P

N (t0,t0+T)
p · zb,p(X) (10)

where zb,p(X) is a 0-1 variable which equals to 1 if b is an
unrelated relay in the routing tree of topic p, and 0 other-
wise.

cDb (X) =
∑
p∈Sb

N (t0,t0+T)
p · db,p(X) (11)

It is not difficult to derive the following relationship between
broker SSBR cost and the total SSBR cost of the system:

C(t0,t0+T)(X) =
∑
b∈B

cb(X)

=
∑
b∈B

(cOb (X) +wd · cDb (X))
(12)

In each iteration our greedy algorithm finds the broker
with the highest broker cost under configuration X and con-
struct a neighborhood Nb(X) consisting of configurations
that are derived by swapping the mapping of the broker

80

Algorithm 3: SSBR-Greedy

Input: G(V,E), S,N
(t0,t0+T)
p

Output: ListofX that along the improvement path of
C(t0,t0+T)(X)

˜X = initial configuration; ˜minC = C(t0,t0+T)(˜X);

List = [] while ˜minC < minC do

minC = ˜minC,X = ˜X, List.add(X);
foreach X′ ∈ Nb(X) do

tmpC = C(t0,t0+T)(X
′);

if tmpC < ˜minC then
˜minC = tmpC, ˜X = X′;

end
end

end

with the highest external overhead grade with that of an-
other broker. Apparently the neighborhood contains only
|V |−1 configurations. By searching new configurations that
have a different mapping for the bottleneck broker who has
the worst broker cost, we have a better chance to improve
the total cost.

We adapt the SSBR-Greedy algorithm to solve the origi-
nal reconfiguration computation problem by taking into ac-
count reconfiguration cost Cst(X,X ′), and call the new al-
gorithm DYNATOPS-Greedy algorithm (see Algorithm 4).
It consists of two steps: At the first step, the algorithm
applies the SSBR-Greedy algorithm to iteratively find new
configurations that improves the C(t0,t0+Tfree): each itera-
tion the algorithm finds a better configuration with a better
C(t0,t0+Tfree) than the one of last iteration. They form an
improvement path in C(t0,t0+Tfree). At the second step, the

reconfiguration cost Cst(X,X ′) of all the configurations X ′

along the improvement path are taken into account and the
best one is selected as the output of the algorithm. The
algorithm has the same computational complexity as the
SSBR-Greedy algorithm.

Algorithm 4: DYNATOPS-Greedy

Input: G(V,E), S,N
(t0,t0+Tfree)
p ,X

Output: X′ that maximize Bft(X,X′)− Cst(X,X′)
step one:
List = SSBR−Greedy();
step two:
C = C(t0,t0+Tfree)

(X);

bestUtil = 0;
X′ = X;

foreach ˜X in List do
˜C = A.get(˜X);

Util = C − ˜C − Cst(X, ˜X);
if Util > bestUtil then

bestUtil = Util;

X′ = ˜X;
end

end

5.1.2 Reconfiguration Protocol
The control plane of a DYNATOPS broker consists of

two levels: 1) the overlay level, where its overlay nodeID,
neighbor table and routing table are maintained; and 2)

Figure 4: An example of the step 3 of the reconfiguration
protocol. Solid lines in (a) shows topic t1’s tree before re-
configuration. Broker “C” and “D”are reconfigured. Dashed
lines in (b) shows the reconstructed tree after “C” and “D”
exchange their data in step3.1. Solid lines in (c) shows the
repaired topic routing tree after step 3.2.

the pub/sub level where its topic routing trees (i.e. logical
parent nodes and children nodes in trees) are maintained.
Each reconfiguration process has a unique version number,
a successful reconfiguration will update the control plane
of all brokers to the new version where both levels of the
control plane must converge. On one hand, DYNATOPS
relies on the maintenance protocol of the underlying struc-
ture overlay to ensure the convergence of the overlay level
of the new control planes of brokers. On the other hand,
we designed an efficient reconfiguration protocol to ensure
the convergence of the pub/sub level of the new control
planes. Taking Chord DHT as an example underlying struc-
ture, we show that the entire reconfiguration process incurs
O(|V | + (log2(|V |) + |P |log(|V |)) · Γ(X,X ′)) message over-
head where Γ(X,X ′) is the number of nodes to reconfigure.
A reconfiguration of the broker network from version num-
ber s1 to s2 consists of following steps:

STEP1: The reconfiguration manager sends a RCFG INIT
message to all brokers. The message contains the new ver-
sion number s2 of the control plane after reconfiguration.
Upon receiving the message the brokers replicate their s1
control planes to s2 and maintains both instances keeping
s1 as their default control plane to be used by data plane.

STEP2: The reconfiguration manager sends to brokers
with new nodeIDs in Chord a RCFG OVERLAY message.
The brokers that receive the message leave and rejoin the
Chord ring with their new nodeIDs in s2. Once successfully
reconfigured, the brokers send a RCFG OVERLAY DONE
message back to the reconfiguration manager. (According
to [25], the step takes O(log2(|V |) · Γ(X,X ′)) messages to
repair the Chord ring)

STEP3: The reconfiguration manager sends to all brokers
a RCFG PUBSUB message to reconfigure the pub/sub level

81

of the control plane. This process is divided into two sub-
steps. An example of this process is shown in Figure 4.

• 3.1: Each reconfigured broker (under a new nodeID
in s2) forwards its Topic Routing Table data in s1 to
the broker who takes its s1 nodeID in s2. This is eas-
ily done by key-based routing in the overlay without
knowing the real identity of the other broker. The data
corresponds to a local view of the topic routing trees
it joined (see Figure 4). The brokers replace their s2
Topic Routing Table with the received data to restore
the topic routing trees in s2. We illustrate in the ex-
ample that the restored topic routing tree is the same
as the original tree in structure. However, the tree
is not necessarily consistent with the subscriptions at
brokers after reconfiguration: broker “C”does not sub-
scribe to t1 but it is a leaf node in the tree. (the step
takes O(log(|V |) · Γ(X,X′)) messages)

• 3.2: To repair the inconsistency, each reconfigured bro-
ker compares its Topic Routing Table with its sub-
scriptions, and initiates tree leave/join requests to fix
its incorrect participation/absence in topic trees. The
request messages are forwarded to the root of the tree
and a top-down fashion update of the tree is incurred.
Upon completion of this step, all the topic routing trees
in s2 correctly reflect both the routing and subscrip-
tions states of the broker network. (the step takes
O(|P |log(|V |) · Γ(X,X ′)) messages)

STEP4: The reconfiguration manager sends to all brokers
a RCFG FINISH message. Once the message is received,
the brokers make s2 as their default control plane and nullify
s1 when all brokers switched to s2. (the step takes O(|V |)
messages)

To avoid event losses it is important for each broker to
maintain two instances of its control planes (s1 and s2) dur-
ing the reconfiguration process. An event published dur-
ing the reconfiguration is forwarded by the data plane and
tagged with the version of the control plane used for table
lookup so that its next hop can use the same version to en-
sure consistency. Moreover, any broker will not activate s2
before s2 become convergence at all brokers (i.e. STEP4).
This way the correctness of event notification is ensured. To
cope with uncertain delays in the network, each step of the
protocol is enforced by atomic operation [17]. That is, next
step will not be triggered unless all brokers have acknowl-
edged accomplishment of the current step.

6. PERFORMANCE EVALUATION
To evaluate the performance of DYNATOPS, we created

two models that emulate the real world subscription dy-
namics, and compared DYNATOPS with several well-known
topic-based pub/sub implementations for its subscription
management and event publication efficiencies.

6.1 Dynamic Subscriptions Modeling
We considered two models of subscription changes: (1) a

location-based subscription model that emulates users’ dy-
namic subscriptions in many geosocial networking applica-
tions and location-based services; and (2) a generic Poisson
dynamic subscription model that emulates changing inter-
ests of users in timely and popular topics.

6.1.1 Location-based Subscription Model
To create a large-scaled dynamic subscription model, we

considered a twitter dataset [44] containing 3 million loca-
tion checkins (in longitude and latitude coordinates) from
over 40K Twitter users in the U.S. for 3 months period from
Aug. 1st 2010 to Oct. 31st 2010. To convert the dynamic
location checkins into dynamic subscriptions, we divided the
U.S. geography into grids of one degree of latitude by one
degree of longitude, the size of which is about 3500 mile2.
This results in 20 × 60 (i.e. 1200) grids, and we considered
each of them as a location topic (i.e. totally 1200 topics).
Users’ checkins over time at different grids are considered as
traces of their movement.

We presented our preliminary findings on users’ grid check-
ins in Fig. 5a and 5b. We observed over 450K grid visits
events (we treat users’ successive checkins to locations in the
same grid as a single event), from which we extracted over
160K unique (user,grid) pairs. 1/3 of them are single-time
visit (i.e. a user visits to the grid only once) while the other
2/3 are at least repeated once by the user (Fig. 5a). We also
analyzed the linger time of all the events. We treated the
lapse of time before a user checked into a new grid as the
linger time he/she stayed in the current grid. Our results
indicates that about half of the 450K visits have a linger
time less than a day. On the other hand, there are 10% of
the visits are relatively long-lived, with a linger time over a
week (Fig. 5b).

For users’ dynamic subscriptions, we assume a user always
subscribed to the grids he/she was residing in. Furthermore,
during experiments we let each user randomly choose 4 other
users as friends, and constantly follow/subscribe to the cur-
rent grids/locations of his/her friends(Fig. 5c). This mimics
a geosocial networking application, e.g. foursquare, where
users can share their locations and activities with friends.

To experiment the pub/sub system, we considered 1200
brokers such that each broker is located inside a grid. The
RTT delay between a pair of brokers and that between a
broker and a user are random variables with their means
proportional to their geographical distances.

6.1.2 Generic Poisson Subscription Model
In this model, we emulated a time period of T = 100hrs

with time granularity of Δt = 1hr. We experimented with
50K users, 100 brokers and 1000 topics. Each user subscribes
to 5 topics according to the patterns of their subscriptions.
The dynamics of subscription changes over time is modeled
as a Poisson process. We considered three patterns for users’
topic subscriptions:

• Uniform Distribution: users subscribe to topics from
the topic space in a uniform random manner.

• Zipf Distribution: topic popularity follows Zipf distri-
bution. The probability for the ith topic in the topic
space is proportional to (i+ 1)−σ, i = 1, 2, . . . , |P |.

• Multimodal: users’ subscriptions fall into modes. We
evenly partitioned the topic space intom = 100 modes,
and each mode contains nmode = 10 topics. A user first
randomly select a interested modes and then choose
topics uniformly at random from the selected mode.

6.2 Comparison Systems
We evaluated DYNATOPS along multiple dimensions by

extensive simulations. The key dimensions that serve as

82

(a) distribution of users’ visited
grids in number of repeated visits

(b) distribution of users’ grid-
visits in their linger time (c) Location-based dynamic subscriptions from Twitter data

Figure 5: dynamic subscription model from Twitter dataset

metrics for our study include subscription management over-
head, as the number of control messages exchanged between
brokers to update topic trees when brokers’ subscription
changes, and to update information in clusters; notification
delay as the average latency for publications to be delivered
from publishers to subscribers; notification overhead as the
number of messages to deliver event publications; and re-
configuration overhead as the number of control messages
for the reconfiguration protocol.

We compared DYNATOPS with several existing topic-
based pub/sub systems of different categories: 1) Bayeux,
a well-known pub/sub system atop the Tapestry DHT [10];
Bayeux was picked because it is a rendezvous-based pub/sub
system on a structured overlay – providing a common ground
for comparing with our system. Unlike DYNATOPS, Bayeux
does not optimize its brokers based on subscriptions or per-
form reconfigurations, giving us an opportunity to test the
value of these techniques. 2) Topic Connected Overlay(TCO),
a pub/sub overlay [19, 33, 11, 12] that eliminates unrelated
relay brokers to provide optimal notification overhead ef-
ficiency by connecting brokers that subscribe to the same
topic to form a connected subgraph; Since TCO optimizes
broker topology at all times for notification efficiency, it
again gives us an opportunity to test the performance and
efficiency of our cost-driven broker reconfiguration policy. 3)
GeoPS [26], a pub/sub service specific to location-based sub-
scriptions. It takes advantage of geography-aware overlay
hierarchy and geocasting technique for efficient subscription
management and publication notifications. Furthermore, to
study the value of the proposed schemes, we considered three
versions of DYNATOPS system: (a) DYNATOPS(BNR)
explores the benefit of the broker network reconfiguration
scheme with an equivalent user placement scheme as other
systems; (b) DYNATOPS(UP) explores the benefit of the
user placement scheme only, and (c) DYNATOPS is the
overall mechanism that incorporates both user placement
and broker network reconfiguration schemes.

We implemented our simulator and all the above systems
in Java. In our simulation, the broker networks of Bayeux
and GeoPS were considered to be static. For the Bayeux
simulation, brokers join the Tapestry Overlay with random
Ids uniformly distributed over the Id space. For the GeoPS
simulation, we divided the geography into power-of-2 grids
on both edges of a rectangular geography as required by the
GeoPS system. Specifically, we divide the U.S. into 32× 32
grids (i.e. 1024 in total). TCO requires its broker over-
lay to be reconfigured whenever topic-connected property
is no longer hold due to subscription changes on brokers.

We reconfigure TCO by running the DCB-M algorithm [12]
for partitions of nodes having changed subscriptions. Since
there is no existing reconfiguration protocol to refer to, we
assume the message overhead to conduct each reconfigura-
tion is the number of links that are changed in the network
topology. Users are placed on brokers at the start of each
simulation, and their subscriptions change over time follow-
ing the specific subscription model. Since Bayeux and TCO
do not have a specific user placement policy, we considered
two commonly used policies in the simulation: 1) Static se-
lection, where a user is statically assigned a broker and 2)
Location-based selection, where each broker is responsible
for users in a specific region and users handover to new bro-
kers when they move to different regions.

6.3 Experimental Results

6.3.1 Basic Results
We experimented DYNATOPS and compared its perfor-

mance with existing systems under the two subscription
models.

location-based subscription model: Figure 6 shows the
results for the location-based subscription model. We com-
pared DYNATOPS with Bayeux and GeoPS in their sub-
scription and publication performances. For Bayeux, we
considered both static and location-based user placement
policies indicated by “Bayeux(static)” and “Bayeux(loc)”.
Furthermore, we considered proximity neighbor selection(PNS)
in its overlay construction, along with location-based user
placement, indicated by “Bayeux(loc+PNS)”. When exper-
imented with user placement technique, we formed broker
clusters (see Section 4) based on their geographical prox-
imity to avoid extensive maintenance overhead, and let each
cluster manage users in a continuous geographical area close
to it.

We observe that by grouping users with similar subscrip-
tions, DYNATOPS significantly reduces the subscription man-
agement overhead against other systems (Fig. 6a). More-
over, we observe that the overhead first decreases with the
increase of the cluster size c, which indicates the reduction
in topic tree updates in the broker network. Under large
cluster sizes (e.g. c = 50), however, the overhead for updat-
ing brokers’ states in a cluster becomes significant, so the
total subscription management overhead starts to increase.

Fig. 6b shows the standard deviation in subscription load
on brokers. We observe that pure similarity based user
placement (wl = 0) worsens the load imbalance on brokers,
especially when the cluster size is large. However, the is-

83

(a) brokers’ subscription changes (b) notification delay (c) notification overhead (d) reconfiguration overhead

Figure 7: Poisson subscription model results under varying rate of user subscription changes with multimodal pattern

(a) subscription management
overhead (Tupdate = 12hrs)

(b) standard deviation of brokers’
subscription load (Tupdate =
12hrs)

(c) ratio of users’ handovers in
DYNATOPS to that of GeoPS

(d) notification delay
(Tfree = 12hrs, c = 10, wd = 1)

(e) notification overhead
(Tfree = 12hrs, c = 10, wd = 1)

(f) DYNATOPS notification per-
formance

Figure 6: location-based subscription model results

sue is greatly improved by adjusting the weight for the load
factor in the algorithm. We also evaluated the number of
user handovers due to mobility in GeoPS and DYNATOPS.
We observe that DYNATOPS reduces the user handovers
by over 80% against GeoPS as shown in Fig. 6c.

Both user placement and broker network reconfiguration
can improve notification delay (Fig. 6d) and overhead (Fig.
6e). This is because by clustering users with the same topic
the user placement can reduce the number of brokers that
need to subscribe to the topic so as to reduce the size of
the topic routing tree. Combining the two algorithms DY-

NATOPS is highly efficient and it provides over 60% im-
provement against Bayeux and 30% against GeoPS in delay,
and over 40% improvement against Bayeux and 20% against
GeoPS in overhead (DYNATOPS wd = 1). Furthermore,
the notification performance improvement increases as the
increase of the cluster size (Fig. 6f). This is because with
larger cluster size the user placement makes the brokers’
subscriptions more skewed, which favors the broker network
reconfiguration to reduce unrelated relays in the topology.

(a) notification delay (b) notification overhead

Figure 8: Poisson subscription model results in different pat-
terns
(subscription change rate = 0.1, Tfree = 10hrs)

Poisson subscription model: Fig. 7 shows the re-
sults of the Poisson subscription model where users subscrip-
tions change with varying Poisson rates. We compared DY-
NATOPS with Bayeux and TCO for subscription and publi-
cation performances. In both Bayeux and TCO, we assume
users are statically assigned brokers in a uniformly random
manner. For publication performances, we also considered
DYNATOPS(BNR) where the user placement is the same
as those for Bayeux and TCO, to evaluate DYNATOPS un-
der the broker network reconfiguration technique along. For
simplicity, in the experiment we assumed a unit RTT delay
between any pair of brokers so that the notification delay is
dominated by the number of overlay hops.

Fig. 7a to 7d show the experimental results where users
subscriptions follow the multimodal pattern under varying
Poisson rate of user subscription changes. We observe that
DYNATOPS reduces the number of brokers’ subscription
changes by 80% against other systems (Fig. 7a), resulting
in significantly less subscription management overhead. Fig.
7b and 7c show the publication delay and overhead perfor-
mances of different pub/sub systems. TCO achieves a better
overhead performance than Bayeux and DYNATOPS(BNR)
because of the topic-connected property. However, we ob-
serve a worse delay performance because its suboverlay con-
struction is not delay aware. On the other hand, DYNATOPS

84

considering both user placement and broker network recon-
figuration outperforms Bayeux and TCO on both delay and
overhead. It provides 10% improvement in delay and over
50% improvement in overhead against the compared sys-
tems.

We also compared the reconfiguration cost between DY-
NATOPS and TCO (Fig. 7d). The reconfiguration overhead
for TCO increases dramatically with the increase of the rate
of users subscription changes. This makes the scheme infea-
sible to be applied in highly dynamic environment. On the
other hand, DYNATOPS’s reconfiguration overhead is less
sensitive to the rate of users subscription changes. It is over
80% less than that of TCO when users’ subscriptions change
fast.

The notification performance of each system under dif-
ferent subscription patterns of users are shown in Fig. 8a
and Fig. 8b. We observe that TCO has a low delay under
zipf pattern where subscription is highly skewed but worse
under other subscription patterns. On the other hand, DY-
NATOPS outperforms other systems under all subscription
patterns.

(a) notification performance
(location-based model)

(b) reconfiguration overhead
(location-based model)

(c) notification performance
(Poisson model)

(d) reconfiguration overhead
(Poisson model)

Figure 9: results under varying reconfiguration free period.
For location-based model, c = 10; For Poisson model, sub-
scription change rate = 0.025 and c = 5.

6.3.2 Reconfiguration free period
To gain better understanding of the performance, we ex-

perimented with various reconfiguration free period Tfree

in both location-based and Poisson models. In Fig. 9. We
observe that with the increase of the reconfiguration free pe-
riod, the notification performance degrades slightly and the
reconfiguration overhead decreases because less reconfigura-
tions were triggered. It is worth noting that DYNATOPS
only experienced a slight degradation in notification effi-
ciency when the reconfiguration free period increases. This
is because the user placement technique stabilized brokers
subscriptions such that they do not experience dramatic sub-

20

40

60

80

100

 10 50 100 500 1000

A
ve

ra
ge

 S
av

in
g(

%
)

Number of Brokers

DelayM
DelayU

ExtOverheadM
ExtOverheadU

(a) Scaling of Broker Network

20

40

60

80

100

 50 100 500 1000 5000

A
ve

ra
ge

 S
av

in
g(

%
)

Number of Topics

DelayM
DelayU

ExtOverheadM
ExtOverheadU

(b) Scaling of Topic Space

Figure 10: Performance savings of DYNATOPS configura-
tions against CHash under various size of broker network |B|
and of topic space |P |. We varied |B| with fixed |P | = 100,
and varied |P | with fixed |B| = 100. “M” denotes multi-
modal pattern and “U” denotes uniform pattern.

varying |B| varying |P |
size 10 100 1000 50 500 5000
time 28ms 184ms 96s 98ms 502ms 1.9s

Table 1: The computation time of the DYNATOPS-Greedy
algorithm under various size of broker network |B| and of
topic space |P |. For varying |B|, we fixed |P | = 100, and for
varying |P | we fixed |B| = 100.

scription changes over time in spite of dynamic users’ sub-
scriptions.

6.3.3 Scalability
We also experimented with various sizes of the broker net-

work and of the topic space to evaluate the time efficiency
and performance of the DYNATOPS-Greedy configuration
algorithm. We ran the algorithm on a Dell workstation
with a QuadCore 2GHz CPU and 2G memory. The perfor-
mance of the output DYNATOPS configurations are com-
pared against that of a bootstrap configuration from con-
sistent hashing of brokers public keys or IP addresses for
their nodeIDs. This is the configuration approach adopted
by most existing DHT-based pub/sub systems [30, 40, 41,
15]. The performance was evaluated under two subscrip-
tion patterns on brokers: uniform distribution subscriptions
and multimodal subscriptions. Figure 10 and Table 1 show
the performance and computation time of the algorithm.
We observe that DYNATOPS configuration always provides
improved notification performance against consistent hash-
ing under various size of broker networks and topic spaces.
The improvement is larger under skewed subscription pat-
terns than the uniform pattern. Furthermore, the proposed
configuration algorithm is efficient to compute DYNATOPS
configurations for a large broker network and topic space.

7. DISCUSSION AND CONCLUSION
In this paper, we propose and develop DYNATOPS, a pub

sub system for societal scale applications, that can deal with
dynamic, yet short lived subscriptions. DYNATOPS users
are moderately repositioned on brokers for efficient subscrip-
tion management and brokers are moderately repositioned
on the overlay structure for efficient event notifications, to
adapt to the publications and subscription dynamics. Un-
like existing systems where the overlay topology changes in
a self-organizing manner in response to the changes of sub-
scriptions, DYNATOPS performs planned reconfiguration
utilizing a cost-driven reconfiguration process. The pro-

85

posed approach can significantly reduce the reconfiguration
cost while maintaining a high notification performance as
compared to state-of-the-art systems.

The centralized reconfiguration requires the participation
of all brokers in the structured overlay. To mitigate the
scalability concern on the reconfiguration computation and
protocol when the network size grows, a hybrid pub/sub net-
work similar to [18] which exploit both unstructured cluster-
ing of similar peers and structured rendezvous routing may
be adopted. In the hybrid network, only gateway brokers
from each cluster of gossip-based unstructured overlays will
join the core structured rendezvous network and participate
into the structure reconfiguration. The performance of the
hybrid structure will be investigated in the future work. We
will also extend the centralized configuration manager to a
distributed implementation, mitigating any reliability con-
cerns.

We have implemented a prototype of the DNATOPS bro-
ker system atop a Chord DHT implementation OpenChord
[3]. We will next deploy this broker network on a campus
cluster and evaluate the system on an emulated Internet us-
ing Modelnet [2]. We are also extending DYNATOPS to
implement a large scale mobile alerting system that exploits
the geographical and societal correlations inherent in soci-
etal scale notification systems.

8. REFERENCES
[1] Farecast.

http://www.ics.uci.edu/˜dsm/papers/farecast techreport.pdf.

[2] Modelnet. http://issg.cs.duke.edu/modelnet.html.

[3] Openchord. http://sourceforge.net/projects/open-chord/.

[4] techreport. http://www.ics.uci.edu/~yez/dynatops_tech.pdf.

[5] D. Rosenblum A. Carzaniga and A. Wolf. Achieving scalability
and expressiveness in an internet-scale event notification
service. In PODC, 2000.

[6] D. S. Rosenblum A. Carzaniga and A. L. Wolf. Design and
evaluation of a wide-area event notification service. In TOCS,
2001.

[7] Y. Cheung A. King and H. Jacobsen. Publisher placement
algorithms in content-based publish/subscribe. In ICDCS, 2010.

[8] I. Aekaterinidis and P. Triantafillou. Pastrystrings: A
comprehensive content-based publish/subscribe dht network. In
ICDCS, 2006.

[9] et al. B. F. Cooper. Pnuts: Yahoo!s hosted data serving
platform. In VLDB Endow., 2008.

[10] et al B. Y. Zhao. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. In UCBerkeley Tech. Rep.,
2001.

[11] H. Jacobsen C. Chen and R. Vitenberg. Divide and conquer
algorithms for publish/subscribe overlay design. In ICDCS,
2010.

[12] R. Vitenberg C. Chen and H. Jacobsen. Scaling construction of
low fan-out overlays for topic-based publish/subscribe. In
ICDCS, 2011.

[13] F. Cao and J. P. Singh. Efficient event routing in content-based
publish/subscribe service network. In INFOCOM, 2004.

[14] F. Cao and J. P. Singh. Medym: Match-early with dynamic
multicast for content-based publish-subscribe networks. In
Middleware, 2005.

[15] A. Post D. Sandler, A. Mislove and P. Druschel. Feedtree:
Sharing web micronews with peer-to-peer event notification. In
IPTPS, 2005.

[16] G. Li et al. Adaptive content-based routing in general overlay
topologies. In Middleware, 2008.

[17] R. Strong F. Cristian, H. Aghili and D. Dolev. Atomic
broadcast: From simple message diffusion to byzantine
agreement. Information and Computation, 1995.

[18] A. H. Payberah F. Rahimian, S. Girdzijauskas and S. Haridi.
Vitis: A gossip-based hybrid overlay for internet-scale
publish/subscribe enabling rendezvous routing in unstructured
overlay networks. In IPDPS, 2011.

[19] et al G. Chockler. Constructing scalable overlays for pub-sub
with many topics: Problems, algorithms and evaluation. In
PODC, 2007.

[20] et al G. Chockler. Spidercast: A scalable interest-aware overlay
for topic-based pub/sub communication. In DEBS, 2007.

[21] V. Muthusamy G. Li and H.-A. Jacobsen. Adaptive
content-based routing in general overlay topologies. In
Middleware, 2008.

[22] N. Venkatasubramanian H. Jafarpour, S. Mehrotra and
M. Montanari. Mics: An efficient content space representation
model for publish/subscribe systems. In DEBS, 2009.

[23] et al H. Liu. Client behavior and feed characteristics of rss, a
publish-subscribe system for web micronews. In IMC, 2005.

[24] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile
environment. Wireless Networks, 2004.

[25] et al I. Stoica. Chord: A scalable peer-to-peer lookup service
for internet applications. In SIGCOMM, 2001.

[26] U. Lee J. H. Ahnn and H. J. Moon. Geoserv: A distributed
urban sensing platform. In CCGrid, 2011.

[27] R. S. Kazemzadeh and H.-A. Jacobsen. Reliable and highly
available distributed publish/subscribe service. In SRDS, 2009.

[28] C. Jayalath K.R. Jayaram and P. Eugster. Parametric
subscriptions for content-based publish/subscribe networks. In
Middleware, 2010.

[29] O. Kasten L. Fiege, F. C. Gartner and A. Zeidler. Supporting
mobility in content-based publish/subscribe middleware. In
MIDDLEWARE, 2003.

[30] et al M. Castro. Scribe: A large-scale and decentralized
application-level multicast infrastructure. In PJSAC, 2002.

[31] R. Oliveira M. Matos, A. Nunes and J. Pereira. Stan:
exploiting shared interests without disclosing them in
gossip-based publish/subscribe. In IPTPS, 2010.

[32] G. Muhl. Large-scale content-based publish/subscribe systems.
In PhD thesis, Darmstadt Univ. of Technology, 2002.

[33] M. Onus and A. W. Richa. Minimum maximum degree
publish-subscribe overlay network design. In INFOCOM, 2009.

[34] R. Guerraoui P. Th. Eugster, P. A. Felber and A. Kermarrec.
The many faces of publish/subscribe. In ACM Computing
Surveys (CSUR), 2003.

[35] P. R. Pietzuch and J. M. Bacon. Hermes: A distributed
event-based middleware architecture. In DCSW, 2002.

[36] et al R. Baldoni. Tera: topic-based event routing for
peer-to-peer architectures. In DEBS, 2007.

[37] L. Querzoni R. Baldoni, R. Beraldi and A. Virgillito. Efficient
publish/subscribe through a self-organizing broker overlay and
its application to siena, 2007.

[38] et al. S. Girdzijauskas, G. Chockler. Magnet: practical
subscription clustering for internet-scale publish/subscribe. In
DEBS, 2010.

[39] et al S. Voulgaris. Sub-2-sub: Self-organizing content-based
publish subscribe for dynamic large scale collaborative
networks. In IPTPS, 2006.

[40] et al S.Q. Zhuang. Bayeux: an architecture for scalable and
fault-tolerant wide-area data dissemination. In NOSSDAV,
2001.

[41] R. Peterson V. Ramasubramanian and E. G. Sirer. Corona: A
high performance publish-subscribe system for the world wide
web. In NSDI, 2006.

[42] R. Vitenberg V. Setty, M. Steen and S. Voulgaris. Poldercast:
Fast, robust and scalable architecture for p2p topic-based
pub/sub. In Middleware, 2012.

[43] V. Muthusamy Y. Yoon and H. Jacobsen. Foundations for
highly available content-based publish/subscribe overlays. In
ICDCS, 2011.

[44] K. Lee Z. Cheng, J. Caverlee and D. Z. Sui. Exploring millions
of footprints in location sharing services. In ICWSM, 2011.

86

