
��� �� ��� �� ��� ���

Doctoral Thesis

������ ������ ��	
������ �����
���

����� ����	
-����� ����-��-����

���������

Behavior-aware P2P Protocol for High Data Availability

��� ������ (� �� Kim, Kyungbaek)

���������������� �������������������������

School of Electrical Engineering & Computer Science

Division of Electrical Engineering

	�� ��� �
 ��� �� ��	 ���

Korea Advanced Institute of Science and Technology

2007

������ ������ ��	
������ �����
���

����� ����	
-����� ����-��-����

���������

Behavior-aware P2P Protocol for High

Data Availability

Behavior-aware P2P Protocol for High

Data Availability

Advisor : Professor Daeyeon Park

by

Kim, Kyungbaek

School of Electrical Engineering & Computer Science

Division of Electrical Engineering

Korea Advanced Institute of Science and Technology

A thesis submitted to the faculty of the Korea Advanced

Institute of Science and Technology in partial fullfillment of the

requirements for the degree of Doctor of Philosophy in the School

of Electrical Engineering & Computer Science, Division of Elec-

trical Engineering

Daejeon, Korea

2006. 11. 22.

Approved by

Professor Daeyeon Park

Major Advisor

������ ������ ��	
������ �����
���

����� ����	
-����� ����-��-����

���������

��� ������

�� �������	
 �����
������������� �	
���������������	
 ����������������

������
��
� ����� �������	
����.

2006�Æ	 11��� 22�
�

������������� ��� ��

	 (��)

���������� ��� �	
� (��)

���������� �	�
�� ��� (��)

���������� ��� �
� �
 (��)

���������� �� ��� �
� (��)

DEE

20015030

��� ������. Kim Kyungbaek. Behavior-aware P2P Protocol for High

Data Availability. ������ ������ ��	
������ �����
��� �Æ��� 	�
��	-

����� ����-��-���� ������
��. School of Electrical Engineering &

Computer Science, Division of Electrical Engineering . 2007. 74p.

Advisor Prof. Daeyeon Park. Text in English.

Abstract

A lot of research papers discussed the Distributed Hash Table (DHT)

based p2p systems to promise that idle resources may be efficiently harvested.

However, p2p systems are composed of components with extremely heteroge-

neous availabilities and to handle churn, the system will generate the heavy

information maintenance traffic to keep the efficiency of the DHT. Moreover,

the previous researches concentrate on the efficient lookup of the p2p system

and they fails to keep high data availability effectively.

This dissertation presents the behavior-aware p2p protocol for high data

availability. By using this protocol, the p2p system can reduce the overhead by

exploiting the heterogeneous behavior of participant nodes efficiently. Unlike

the DHT based p2p which use the static nodeID which is obtained by well-

balanced hashing function, the behavior-aware p2p ignores this static nodeID

and uses the dynamic nodeID. This dynamic nodeID is composed of the Load

Balanced ID which balance the loads of the reliable and powerful nodes and

the Load Free ID which reduce the responsibility of normal and weak nodes

and eliminate the compulsory maintenance overhead when the churn of them

occurs. The assignment of nodeID performs without any central management

server. The new nodeID is assigned according to the current network state and

the node which processes the join message. After assigning the new nodeID,

this nodeID of a node changes on the fly according to its behavior on the p2p

system. Finally, every node gets its proper nodeID with its characteristics and

each nodes takes the different responsibility in accordance with its nodeID

to support p2p system effectively. The reliable and powerful nodes mainly

i

guarantee the data availability and the correctness of lookup. The normal

and weak nodes assist them and the churn of them can not harm the data

availability and the efficiency of the lookup.

I examine the efficiency of behavior-aware p2p via a event driven simulation.

The results show that the behavior-aware p2p keep high data availability with

less information maintenance traffic than the DHT based p2p and the routing

process is also efficient.

ii

Contents

Abstract i

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background 5

2.1 DHT based P2P Protocols . 5

2.2 Node Heterogenity . 8

2.3 Data Availability . 9

2.4 Data Maintenance Overhead . 11

3 Naive Replication Approach 13

3.1 Quorum based Replication . 13

3.2 Availability based Replication 14

3.3 Management of Replication Set 15

3.4 Limitation of Naive Approaches 17

4 Behavior-aware P2P Protocol 19

4.1 Overview . 19

4.2 Dynamic NodeID . 22

iv

4.2.1 NodeID Transformation 22

4.2.2 NodeID Assignment - LBID 24

4.2.3 NodeID Assignment - LFID 30

4.3 Data Management . 33

4.3.1 Availability Prediction 34

4.3.2 Data Replication Set . 36

4.3.3 Candidate Node . 37

4.4 Lookup . 38

4.5 Node Failure Recovery . 39

4.5.1 Transient Node Failure 39

4.5.2 Candidate Node Failure 40

4.5.3 Reliable Node Failure . 40

4.5.4 Update Messages . 41

5 Performance Evaluation 43

5.1 Simulation Setup . 43

5.2 Data Maintenance traffic . 45

5.2.1 Various Number of Nodes 45

5.2.2 Various Lifetime . 47

5.2.3 Data Traffic Usage in Time Domain 48

5.2.4 Data Traffic Usage with Dynamic Network state 51

5.3 Lookup Hops . 54

5.4 Control Traffic . 56

5.5 Load Balance . 59

6 Conclusions 67

Summary (in Korean) 68

References 70

v

List of Tables

5.1 LBID Variation for each BAP 43

vi

List of Figures

2.1 Overview for the general DHT based P2P algorithm 6

2.2 Simple replication in DHT based p2p 9

3.1 Metadata for simple replication methods 14

3.2 Management for the replication set when node A leaves 16

4.1 DHT based P2P vs Behavior-aware P2P 20

4.2 Overview of Behavior-aware P2P Protocol and LBID/LFID ta-

bles for node B(00111) . 21

4.3 Three phases of nodeID assignment 23

4.4 Basic algorithm of the NodeID assignment 25

4.5 The basic concept of LBID routing table (left: LBID 000, right:

LBID 101 . 26

4.6 Simple example of the LBID assignment 28

4.7 Message flow to the whole of the representative nodes 29

4.8 LFID Table and node assignment (LBID 110) 30

4.9 Routing of join request and LFID assignment 31

4.10 Extension of LFID table . 32

4.11 Node availability update . 33

4.12 Node availability prediction . 35

4.13 Data Replication Set and its operation 36

4.14 Lookup Operation . 38

4.15 Failure Recovery for Reliable Node 40

5.1 Distribution of lifetime with various mean of Poisson distribution 44

5.2 Comparison of Total Data Traffic Usage 46

vii

5.3 Comparison of Average Data Traffic Usage 46

5.4 Data traffic with various mean of lifetime, node number = 2048 48

5.5 Data traffic usage, node number = 2048 49

5.6 Join Data traffic usage, node number = 2048 50

5.7 Leave Data traffic usage, node number = 2048 50

5.8 Data traffic usage, node number (1024-2048-4096-2048-1024) . . 51

5.9 Join Data traffic usage, node number (1024-2048-4096-2048-1024) 52

5.10 Leave Data traffic usage, node number (1024-2048-4096-2048-

1024) . 52

5.11 Average Data traffic usage, node number (1024-2048-4096-2048-

1024) . 53

5.12 Comparison of Lookup Hops . 55

5.13 Average Control Messages for each BAP, node number = 2048 . 56

5.14 Comparison of Average Control Messages for various number of

nodes . 58

5.15 Comparison of Average Control Messages for various mean of

lifetime . 58

5.16 Lookup distribution for the total nodes 60

5.17 Lookup distribution for the representative nodes 60

5.18 Data traffic distribution of each node, (pastry, 2048), mean of

lifetime = 4 . 62

5.19 Data traffic distribution of each node, (BAP(1:64), 2048),

mean of lifetime = 4 . 62

5.20 Data traffic distribution of each node, (BAP(1:32), 2048),

mean of lifetime = 4 . 63

5.21 Data traffic distribution of each node, (BAP(1:16), 2048),

mean of lifetime = 4 . 63

5.22 Data traffic distribution of each node, (pastry, 2048), mean of

lifetime = 7 . 65

viii

5.23 Data traffic distribution of each node, (BAP(1:64), 2048),

mean of lifetime = 7 . 65

5.24 Data traffic distribution of each node, (BAP(1:32), 2048),

mean of lifetime = 7 . 66

5.25 Data traffic distribution of each node, (BAP(1:16), 2048),

mean of lifetime = 7 . 66

ix

1. Introduction

In these days, peer-to-peer systems have become an extremely popular plat-

form for large-scale content sharing. Unlike client/server model based storage

systems, which centralized the management of data in a few highly reliable

servers, peer-to-peer storage systems distribute the burden of data storage

and communications among tens of thousands of clients. The wide-spread at-

traction of this model arises from the promise that idle resources may be effi-

ciently harvested to provide scalable storage services. A lot of research papers

discussed the Distributed Hash Table (DHT) based p2p routing algorithms

(Chord, Pastry, Tapestry and CAN) [5][6][7][8].

In contrast to traditional systems, peer-to-peer systems are composed of

components with extremely heterogeneous availabilities - individually admin-

istered host PC’s may be turned on and off, join and leave the system, have

intermittent connectivity, and are constructed from low-cost low reliability

components. For example, one recent study[11] of a popular peer-to-peer file

sharing system found that the majority of peers had application-level avail-

ability rates of under 20 percent and only 20 percent nodes have server-like

profiles. In such an environment, failure is no longer an exceptional event,

but is a pervasive condition. At any point in time the majority of hosts in

the system are unavailable and those hosts that are available may soon stop

servicing requests.

A big issue in current DHT based p2p systems is the high overhead of

maintaining DHT routing data structure and the stored data. When a node

joins/leaves the system, the affected routing data structure on some existing

nodes must be updated accordingly to reflect the change. Moreover, most p2p

systems employ some form of the data redundancy to cope with failure and

1

when the membership of nodes changes, these systems generate huge overhead

of compulsory copies for the data availability [9][10][1]. Especially, for nodes

which join/leave the systems frequently, the p2p system will generate a lot

of routing information update traffic and data copy traffic. It does not only

increase the consumption of the network bandwidth, but also affects the effi-

ciency of DHT based routing algorithms. Until now, DHT based p2p systems

are not widely used in commercial systems yet, most p2p file sharing systems

are still using non structured p2p mechanisms.

In this dissertation, I suggest the behavior-aware p2p protocol to keep the

high data availability with small maintenance cost by exploiting the hetero-

geneity of participant nodes efficiently. The node heterogeneity makes the

maintenance overhead heavy, but it also gives us the chance to improve the

performance, that is, the more reliable and more powerful nodes can handle

much more jobs than normal nodes. If the reliable nodes are sorted out from

the all participant nodes during the system running, the p2p system can get

the chance to use them efficiently and reduce the management overhead. In

this case, using the static nodeID which is used by the previous DHT based

p2p is hard to change the position and role of each participant nodes in the p2p

system. Unlike the DHT based p2p, in the behavior-aware p2p, the nodeID of

a node changes on the fly according to its behavior on the p2p system to sup-

port the p2p system efficiency and each nodes takes the different responsibility

in accordance with its nodeID.

This dynamic nodeID consists of the Load-Balanced ID (LBID) and the

Load-Free ID (LFID). The participant nodes are classified into the two types,

the representative nodes and the transient nodes, according to their nodeIDs

which are changed by the characteristics of nodes. The representative nodes

are more reliable and more powerful nodes and they act as more important

roles such as routing and replication. According to this characteristic, they

are identified by using the LBID which is evenly distributed and the workload

2

of each ID space is balanced. This LBID is dynamically assigned and self-

organizable without any manager and the LBID routing table which helps

for routing to any representative nodes is also organized when the LBID is

assigned. The transient nodes join/leave very frequently on the system and

the majority of the participant nodes are these transient nodes. These nodes

act as simple roles such as servicing the request and helping the representative

nodes. For this purpose, the transient nodes are identified by the LFID which

makes the ID region of a transient node as small as possible and reduces the

effect of the dynamic membership change. The frequently joining/leaving of

transient nodes hardly affects the p2p system. Because the majority of churn

is the churn of transient nodes, the behavior-aware p2p protocol can reduce

the maintenance overhead of the whole p2p system and achieve more efficient

routing without the frequent updates.

Moreover, when a new nodeID is assigned, the LBID table and LFID table

are also organized by self-organizing manner. To find the location of any

ID(nodeID or objectID), the LBID table is used for routing to the correct

sub-region which is mainly guaranteed by a representative node and the LFID

table identifies the right node. The LBID table is composed of O(logNr) entries

where Nr is the number of representative nodes. This is one of the distributed

hash table and its lookup performance is also similar to the DHT. The LFID

table obtains the node information on the same sub-region and it needs just

o(1) cost for the lookup. According to this, the behavior-aware p2p provide

the efficient and bounded lookup as same as the DHT based p2p.

This dissertation is organized as follow. In chapter 2, the DHT based

p2p algorithm and the other researches which try to reduce the maintenance

overhead are described. Chapter 3 shows the naive replication approaches to

reduce the maintenance overhead. These approaches modify the consistent set

of DHT based p2p which is mainly used to replication. Chapter 4 introduces

the detail of the behavior-aware p2p protocol. The key part is the assignment

3

of the dynamic nodeID. During this assignment, each node gets its proper

nodeID according to its behavior on the p2p system. This protocol supports

the efficient data replication management and the correct and efficient lookup.

The simulation environment and performance evaluation are given in chapter

5. The behavior-aware p2p can save about 80% data traffic in normal case and

keep the high data availability. The efficient lookup is also provided. Chapter

6 provides concluding remarks.

4

2. Background

2.1 DHT based P2P Protocols

There are many DHT based p2p algorithms such as Chord, Pastry, Tapestry

and CAN [5][6][7][8]. Each node has a DHT which is a small routing table and

any node can be reached in about O(logN) routing hops where the N is the

total number of nodes in the system. To achieve this efficient and bounded

routing, there are some rules for the organizing the participant nodes. First

of all, each node has a unique nodeID which is taken by hashing any identifier

of a node, and according to its nodeID it maps on the ID space where the

nodes and the objects are co-located with the nodeIDs or the keys which are

the hashed values of the nodes or the objects. In the figure 2.1, the nodeID

of node A is 3 and it maps on the position for 3. After the mapping of the

node id, each node knows its ID region from the next position of its previous

nodeID to its nodeID and each node should store and service the objects for

its ID region. In the figure 2.1, node A takes its ID region from 1 to 3 because

its nodeID is 3 and its previous node B locates on 0 and when a node wants

to get a.mp3 whose key is 2, node A gets the request for it.

The Chord[5] project uses a logarithmic-sized routing table to route object

queries. Its main idea is constructing ring-like network. For a namespace

defined as a sequence of m bits, a node keeps at most m pointers to nodes,

which follow it in the namespace by 21, 22, and so on, up to 2m−1. The ith entry

in node n’s routing table contains the first node that succeeds n by at least

2i−1 in the namespace. Each data is stored on the first node whose identifier

is equal to or immediately follows its key in the namespace.

In Pastry[6], nodes are responsible for keys that are closest numerically.

5

Figure 2.1: Overview for the general DHT based P2P algorithm

When presented with a key, a node routes the query to the node with a nodeId

that is numerically closest to the key, among all currently live nodes. Each

node keeps track of its immediate neighbors in the nodeId space, called a Leaf

Set L which is the set of |L| closest nodes (half larger, half smaller). This set

ensures that the routing can be achieved correctly. Because of that, in spite of

any failures, each node maintains the correct Leaf Set.

Pastry node has another set of neighbors, called a Routing Table, whose en-

tities spread out in the key space. A Routing Table is organized into (log2bN)

rows with 2b−1 cols each (N means the maximum nodeId). The 2b−1 cols in

row n each refer to a node whose nodeId matches the present node’s nodeId in

the first n digits, but whose n + 1th digit has one of the 2b− 1 possible values

other than the n+1th digit in the present node’s nodeId. By using these neigh-

bors, I can achieve the routing more efficiently. Routing consists of forwarding

the query to the neighboring node that has the longest shared prefix with the

key. And, in the case of ties, a key is forwarded to the node with identifier clos-

6

est numerically to the key. Consequently, pastry has (log2bN) ∗ (2b − 1) + 2L

neighbors and routes within O(log2bN) hops.

Tapestry[7] architecture is suggested to enhance Plaxton to be used as a

routing architecture in peer-to-peer environment. In Tapestry’s algorithm,

every node is assigned a unique ID that has n bits. Tapestry guarantees that

the maximum hop count to route message is the logarithm of the node ID space,

and the average value is the logarithm of the number of nodes with logarithmic

overhead of table maintenance. Hence, it is scalable to the increase of node

count.

It is also self-organized without global knowledge about the entire network.

Despite the absence of global information, routing algorithm of Tapestry guar-

antees that routed destination from the different places with the same desti-

nation ID is always the same node. Tapestry is more robust than Plaxton as

it maintains more neighbors in the table and periodically checks the health of

the neighbor nodes.

In the ”Content Addressable Networks” (CAN)[8], nodes are mapped onto

a d-dimensional coordinate space. This coordinate space is completely logi-

cal. The space is divided among all the nodes in the system, so every node

owns individual space. Each node keeps (key, value) pairs and information

of its neighbors. Key is deterministically mapped onto a point in the coordi-

nate space using a uniform hash function. Then, node that includes the point

stores this (key, value) pair. If a node wants to retrieve a value using a key,

it determines the point that includes this key using the same uniform hash

function, then sends lookup request message to its neighbor towards the des-

tination coordinate. Because every node keeps information of its neighbors,

lookup message request message is routed to destination node.

CAN routes messages in a d-dimensional space, where each node maintains

a routing table with O(d) entries and any node can be reached in O(dN1/d)

routing hops. In contrast to other peer-to-peer lookup system (Chord, Pastry,

7

Tapestry, and etc.), the state maintained by a CAN node does not depend on

the network size N , but lookup cost increases faster than the others (logN).

However, if d = logN , lookup cost is similar.

Freedman et al. propose a new lookup mechanism based on a distributed

trie. In the scheme, nodes dynamically replicate only partitions that frequently

access while in previous DHT-based mechanisms each node statically assigns

only those partitions that are close to its address. In addition, they used lazy

updates of lookup structure to reduce maintenance cost by piggybacking trie

state. But they cannot limit the degree of inconsistency and the number of

lookup hops may be very large without upper bound.

2.2 Node Heterogenity

The peer-to-peer systems are composed of components with extremely het-

erogeneous availabilities - individually administered host PC’s may be turned

on and off, join and leave the system, have intermittent connectivity, and are

constructed from low-cost low reliability components. For example, one recent

study[11] of a popular peer-to-peer file sharing system fond that the majority

of peers had application-level availability rates of under 20 percent and only

20 percent nodes have server-like profiles. In such an environment, failure is

no longer an exceptional event, but is a pervasive condition. At any point

in time the majority of hosts in the system are unavailable and those hosts

that are available may soon stop servicing requests. In this case, when a node

joins/leaves system, the affected data structure on some existing nodes must be

updated accordingly to reflect the change. For nodes which join/leave the sys-

tem frequently, system will generate a lot of routing information update traffic

and data copy traffic. It is not only increase the bandwidth consumption, but

also affect the efficiency of DHT based routing algorithms.

8

Figure 2.2: Simple replication in DHT based p2p

2.3 Data Availability

These DHT based algorithms can lookup any data efficiently with DHT, but

when the massively node failures occurs and spoils the information of DHT

without any notification, this efficient lookup can not guarantee the correct-

ness. To cope with the massively node failures, they use the consistent set such

as the successor list of chord and the leaf set of pastry. This consistent set of a

node is composed of the neighbor nodes which locate numerically near to the

node on ID space. This set is tightly coupled to the current state of nodes and

when any node joins or leaves, the consistent set of every node which detects

the change of the membership must update to preserve the current state of the

p2p system. The p2p system guarantees the correctness unless all members of

consistent set fail simultaneously.

This consistent set is used for not only the routing correctness but also the

data availability on durable p2p storage systems such as p2p file systems [9] [10]

and p2p file sharing systems [1]. Data Availability means the total availabil-

ity when the multiple nodes have the data. This availability is obtained by

subtracting the probability of that all nodes which have the data leave from

1. That means if only one node is alive, the data is available. Like the figure

9

2.2(a), one node replicates stored objects to the neighbor nodes which are the

member of consistent set until the replicas are enough to achieve target data

availability. This simple replication guarantees the simple data availability

management and the simple lookup under churn easily and automatically. Be-

cause the consistent set has the current state of nodes and updates immediately

under churn, the p2p system keeps the target data availability automatically.

Moreover, because neighbor nodes of a node already have the replicas of its

objects, even if this node leaves, the neighbor node automatically replaces it

as a servicing node for its object range without additional object copies.

However, the simple replication causes the more maintenance traffic under

churn. If the number of replicas is N and a node leaves, the new N +1 replicas

are needed for the affected nodes. In figure 2.2(b), when a node B leaves, the

nodes A, C, D, F which already have the replicas on node B should make new

replicas and node D which is newly responsible for the object range of node

B makes the replica for this range additionally. Moreover, when a node joins,

each affected node copies the objects to it as a new replica like figure 2.2(c).

In this case, when node B joins and leaves very frequently, the compulsory

data replications occurs and the heavy data traffic wastes even if the dynamic

behavior of node B can not affect the data availability. According to this

simple behavior and the heavy churn of the p2p participants, the data traffic

needed to support the simple replication is very high and bursty.

The commercial p2p file sharing systems leave the data replication up to

the popularity of the data. The popular data is replicated on many clients and

the data availability of this data is very high. However, the unpopular data

are stored on few clients and it is very hard to find this data because of very

low data availability. To make the p2p storage system durable, the smart data

replication methods is needed and the each inserted data is available for any

time and has the similar data availability.

In the paper[12], they stores the replicas on the random nodes on the ID

10

space and periodically checks their availability. This behavior reduces the

compulsory copy because the replication has no relation to the consistent set.

However, this approach takes too much control traffic to keep the node avail-

ability of all replicas for every object on the system. Moreover, they do not

use the consistent set and the change of the data availability caused by the

node failure is detected slowly. The paper [13] shows that the erasure coding

approach reduces the traffic of the replication by using the computing power.

2.4 Data Maintenance Overhead

Though these well-organized rules make the routing of the p2p system efficient

and bounded, a big issue in current DHT based p2p systems is the high infor-

mation maintenance overhead of maintaining DHT routing data structure and

the stored data. Because its nodeID is already given by the hashing function

and its position on ID space is already fixed, when a node joins/leaves the p2p

system, the ID region of its neighbor nodes changes and the stored data should

be copies for the new ID region to service the right and reliable object, and the

update of the routing table is also needed. In figure 2.1, if node A leaves, the

ID region of node D changes and the object from 1 to 3 should be copied from

node A to node D. Moreover, the affected routing table which has the entry

with node A must be updated. In this case, one recent research[11] of a popular

p2p file sharing system found that 80 percent of total nodes of a p2p system

join/leave very frequently and the majority of nodes have the application-level

availability rate of under 20 percent. In such an environment, the information

maintenance overhead is getting worse and this overhead discourages that the

DHT based p2p systems are deployed to the real world.

Some researches emerged to prevent the information maintenance overhead

by using the heterogeneity of participant nodes. In the paper [14], they man-

age the DHT which is certain amount of system routing information with the

11

availability of each node which is evaluated during the time it joins the sys-

tem. They proffer to add stable nodes into routing data structures instead

of frequently join/leave nodes. The paper [12] tries to reduce the compulsory

data copies for joining/leaving nodes with the node availability. They manage

the availability of each data by evaluating the availability of each node which

stores the data. The common feature of these approaches is that the stable

nodes take most system workload and this reduces the information mainte-

nance overhead of the DHT based p2p systems. However, in these approaches,

though the stable nodes get too much workload, they lack for the explicit

method which balances the workload of each stable node. Because each stable

node already has the fixed nodeID and the space between any two stable nodes

is unbalanced, each node gets the unfair workload. Moreover, the fixed nodeID

still affects the ID region of a node and the joining/leaving for a node makes

the compulsory copies too. In my solution, the behavior-aware p2p protocol

which uses the dynamic nodeID, each reliable node gets the balanced ID region

and workload and normal nodes which join/leave very frequently affects the

information maintenance overhead little.

Some approaches [17][18] provide the hierarchical method to use the reliable

node as the supernode. However, because these methods assume that the

powerful supernodes already exist, they lack for the explicit method to sort

out the reliable nodes from the whole participant nodes. This make the system

inflexible and the problems of the static nodeID also exist. The new behavior-

aware p2p protocol assigns the nodeID to a node dynamically with time and

each node can change its nodeID easily on the fly. This behavior makes that the

system chooses the reliable nodes and each node moves to the proper position

according to its characteristics easily and automatica.lly

12

3. Naive Replication Approach

3.1 Quorum based Replication

The simple replication method basically uses the concept of the quorum. The

quorum means that the fixed minimum number of members of a set which

must be present for its objective to be valid. That is, if the number of the

replicas for an object is more than the target quorum, the p2p system considers

that the object is durable under massive failures. However, this simple method

directly uses the consistent set which is tightly coupled to the current state

of networks and when the membership of nodes changes, each affected node

should update its replicas and performs compulsory copies to preserve data

durability. These compulsory copies take high and bursty traffic under churn.

Sometimes, this copies for replicas are meaningless because the new replicas

leave soon.

To prevent these compulsory copies, I propose the quorum based replication

method which is loosely coupled to the consistent set. Like the figure 3.1,

the new information is added; the replication set that indicates which node

replicates the object. The range of this set is same to the consistent set, but the

update of this set occurs individually. When a node joins/leaves, the affected

consistent set should be updated for the correctness of the routing mechanism,

but the replication set is only updated when the number of replicas is fewer

than the target quorum. Because the size of the consistent set is generally

bigger than the number of replicas, the replicas can be interleaved on the

consistent set like the figure 3.1 and they are loosely coupled to the current

state of networks. If the number of replicas is N and a node leaves, the number

of affected nodes can be less than N + 1 and the compulsory copies can be

13

Figure 3.1: Metadata for simple replication methods

reduced under churn.

When a node needs a new replica, it selects the numerically closest node

from this node as a replica, because a member node which is numerically farther

from this node withdraws from the consistent set with higher probability under

churn. In the figure 3.1, if node A needs one more replica, node B can be

selected as a new replica rather than node E.

3.2 Availability based Replication

The quorum based replication tries to keep the number of replicas above the

target quorum to achieve the target data durability. However, if a new replica

is assigned on a node which has the low availability, this node may leave soon

and another new replica is needed. If a new replica is chosen with the node

availability, the more available node is selected as a replica and can reduce the

overhead. I assume that the node availability is the prediction value how long

a node is alive after it joins the p2p system, because in other researches[11] the

long lived nodes generally have the large bandwidth and the big computing

power. This availability information is computed by each node and each node

advertises this information to all members of the consistent set by using the

piggyback method. To detect the node failure, a node periodically sends a ping

message to all member of the consistent set. The availability information is

14

piggybacked on this ping message and each node manages the node availability

of the member of the consistent set with little cost.

Like the quorum based replication, the availability based replication uses

the replication set to make that the replicas are loosely coupled to the consis-

tent set. The main difference of these replications is the selection mechanism

for a new replica. In the availability based replication, each node computes

the data durability with the node availabilities of replicas and the replication

only occurs when the data durability is below the target threshold. When a

new replica is needed, a node selects the most available node of the consistent

set.

3.3 Management of Replication Set

In the figure 3.2(a), when node A leaves, the lookup request for the object in

node A is forwarded to node B automatically because of the basic concept of

the DHT based p2p. In the simple replication, node B always has the replicas

for node A and already has the objects of the responsible range of node A

(RA). That is, the rearrange of the ID space performs easily and automatically.

However, in the quorum based and availability based replications, the replicas

are interleaved on the consistent set and it can not be sure that node B has the

replicas for node A. In order to copy the objects of the new responsible range,

node B should know the locations of the replicas for node A. To do this, each

node advertises its replication sets to all members of its consistent set with

piggybacked ping message.

Under churn, the change of the object range affects the replication set. The

figure 3.2(b) shows the management of the replication set when node A leaves.

The closest neighbor node B which is automatically forwarded the message for

node A will be responsible for the object range of leaving node A (RA). At

this point, there are two replication sets for node A and node B and these sets

15

Figure 3.2: Management for the replication set when node A leaves

should be merged to one new replication set for node B. The basic rule of the

merging operation is that if a node is a replica for any set, it remains a replica

for the new set. In the figure, node F is a replica for node A and it becomes a

new replica for the new replication set. Otherwise, node E is not a replica for

any set and it is still not used as a new replica too. After merging operation,

the new replication set can have more replicas than each previous replication

set and the data durability increases automatically.

During this merge operation, the real objects are selectively copied to the

replicas of the new replication set. Node H which is the previous replica of

node B already has the object for RB and the objects for RA are only copied

to node H when the merging occurs. By the same reason, node F and node G

which are the previous replicas of node A only obtain the objects for RB during

the merging operation. This selective copy can reduce the traffic overhead of

16

the replication.

When a new node joins and a target node gets this join request, the object

range of the target node is divided into two object range and the new node

is responsible for one of them. In this case, the new node simply copies the

replication set of the target node and adds the target node as a new replica

because it already has the object for this range. The target node also adds the

new node as a new replica.

3.4 Limitation of Naive Approaches

These approaches use the consistent set which is the basic information of DHT

based p2p. They only modify the usage of the consistent set and reduce the

information maintenance overhead to keep the high data availability. That is,

according to these approaches, the replicas are loosely coupled to the consistent

set and they are interleaved on the consistent set. When churn occurs, some

nodes can not affect the data availability and the p2p system can reduce the

maintenance traffic.

However, these approaches has a critical hurdle to reduce more maintenance

traffic. That is the static nodeID of DHT based p2p and the consistent set

which is used to replicate the data. Every node gets its nodeID statically by

hashing the identifier of a node such as ip address and mac address. They locate

on the ID space accordin to its nodeID. Moreover, the range of the replication

is bounded by the range of the consistent set. In this case, if a node has

member nodes which have high node availabilities for the consistent set, this

node can save the data traffic with this naive replication approaches. However,

if a node has the consistent set in which the member nodes only have low node

availabilities, these member nodes join/leave very frequently and this node

which uses the naive replication approaches can not reduce the maintenance

traffic effectively. In DHT based p2p can not guarantee that the high available

17

nodes are distributed well-balanced. Consequently, only the modification of

the consistent set can not guarantee that these naive approaches reduce the

maintenance data traffic. To solve this problem, high available nodes should be

distributed well and each node should be located the proper position according

to its behavior.

18

4. Behavior-aware P2P Protocol

4.1 Overview

Previous DHT based p2p systems lack the explicit methods for exploiting the

heterogeneous characteristics of participant nodes. The main reason of this

lack is the static ID which makes the location of a node fixed on the ID space,

and the system with the static ID is not flexible. On the left side of figure

4.1, the large sized computer means the reliable and powerful node and the

small sized computer presents the normal and weak node which frequently

joins/leaves. Because each reliable node already has the fixed nodeID and the

space between any two reliable nodes is unbalanced, each node get the unfair

workload. Moreover, the fixed nodeID still affects the ID region of a node and

the joining/leaving for a node makes the compulsory copies too.

I address this problem with the dynamic nodeID which changes according

to the characteristics of a node with time. The participant nodes are classified

into two types : representative nodes and transient nodes. The representa-

tive nodes are more reliable and more powerful nodes and the transient nodes

join/leave very frequently. The nodeID of a representative node is well dis-

tributed on the ID space and makes that the each representative node gets

fair ID region and balanced loads. The transient node gets the nodeID which

makes its ID region as small as possible to minimize the information main-

tenance overhead for joining/leaving of it. According to this behavior-aware

approach, the representative nodes are sorted out automatically and these

nodes get well balanced loads like the right side of figure 4.1. The transient

nodes also are picked out and the churn of them hardly affects the maintenance

overhead to keep the high data availability.

19

Figure 4.1: DHT based P2P vs Behavior-aware P2P

Figure 4.2 shows the stable state of the p2p system that uses the dynamic

nodeID based p2p system. In this figure, the large computer means the repre-

sentative node and the small computer means the transient node. The partic-

ipant nodes are on the 25 ID space and the number of bits for a nodeID is 5.

The general systems use 2128 ID space, but in this example only few bits are

used for the easy explanation. To distribute the participant nodes efficiently,

the ID space should be divided into many sub-regions which are the balanced

ID regions. Each sub-region has one representative node which represents this

region and many transient nodes which assist the representative node. That

is, the representative node is mainly responsible for routing and servicing the

objects for the sub-region and the transient nodes service the objects for the

small ID region which is assigned by their nodeIDs.

The nodeID consists of the Load-Balanced ID (LBID) and the Load-Free

ID (LFID) and ,in this example, the first 2 bits of a nodeID means the

LBID and the other 3 bits is for the LFID. The LBID is the identifier for the

sub-region and the LFID is the identifier for the node. All nodes on the same

sub-region have the same LBID and they are identified by the LFID. The all

bits of LFID for the representative node are set to 1 and the LFIDs of other

20

Figure 4.2: Overview of Behavior-aware P2P Protocol and LBID/LFID tables

for node B(00111)

transient nodes change according to the behaviors of them. In the figure 4.2,

nodes B, R and M are included in the same sub-region and their LBIDs are

all same value, 00. However, the representative node B has 111 LFID and the

other transient nodes gets different LFIDs.

During the initial state of behavior-aware p2p, new nodes are assigned as

representative nodes to be responsible the sub-region. In this case, the static

ID can not be used at all and every nodeID are assigned by the dynamical

manner to distribute the load of each sub-region evenly. After this state, when

a node joins, it uses its static nodeID by hashing its identifier like any previous

DHT algorithm. This hashed values of nodes is only used to find the sub-region

for them and to distribute evenly them to the sub-regions. To route to the

right sub-region, a node which gets a join request forwards it to the next node

which is the node of the most prefix matched entry of the LBID table. After

21

finding the sub-region, the LFID table assigns the right LFID to the new node.

In the next section, the detail of the whole join process is described.

If the node B leaves, one node which is considered most reliable and avail-

able among other nodes on the same sub-region replaces the node B as a new

representative node and it changes it nodeID for the new position. According

to this behavior, a node which joins or leaves frequently is hard to be a repre-

sentative node and even if it locates on the position of a representative node

fortunately, it leaves the system easily and the more reliable node replaces it.

When a node tries to lookup an object, it sends a lookup request with the

object key to any other participant node. Like the case of the join process, it

forwards to the right sub-region by the LBID tables and find the node whose

ID region is responsible for the key by the LFID tables. For example, in figure

4.2, when a node wants to get an object whose key is 00001, the representative

node B takes the request, However, when a node tries to get an object whose

key is 00010, the transient node R takes the request to assist the representative

node, because the ID region of node R is from the start of the LFID slot,00010

to its nodeID, 00011.

4.2 Dynamic NodeID

4.2.1 NodeID Transformation

In the behavior-aware p2p, the nodeID is not static but dynamic. When a

node joins, it gets its nodeID to locate on the ID space, however, it change

its nodeID with time to organize the efficient p2p system according to its

characteristics. The figure 4.3 shows this ID transformation. At the first time,

when there are few nodes in the p2p system and any one of sub-regions needs

a representative node, this phase is called the bootstrap phase and in this

phase the LBID assignment performs to distribute the sub-region evenly and

to make up the LBID routing tables. When a new node joins, regardless of its

22

Figure 4.3: Three phases of nodeID assignment

behavior and characteristic it should get nodeID to represent the sub-region

as representative nodes. According to this, in this phase some representative

nodes are not a really reliable and available node.

After the bootstrap phase, that is, when the every sub-region has the rep-

resentative node, the transient phase starts. In this phase, some representative

nodes which is not reliable are displace and new reliable nodes which are in

the same sub-regions replace them. To do this, new nodes get nodeIDs to as-

sist sub-regions as transient nodes by performing the LFID assignment which

assigns little load to transient nodes. When a new node joins, the join message

is forwarded to a target node which locates on the right sub-region for the new

node. The target node assigns the new LFID to the new node and fills the

LFID table. When the representative node fails, the most reliable transient

nodes in the same sub-region substitute it.

According to this assignment and the failure recovery, the p2p system be-

comes stable. That is, in the stable phase, more reliable nodes acts as repre-

sentative nodes and the other transient nodes assist the representative nodes

as transient nodes. Like the transient phase, in the stable phase, new nodeID

is assigned by the LFID assignment and the same failure recovery is used.

23

4.2.2 NodeID Assignment - LBID

During the LBID assignment, the behavior-aware p2p protocol can not use the

static nodeID which is generally used by other DHT p2p algorithm and should

assign the proper nodeID to each representative node without a help of any

servers which manages the proper nodeIDs. This LBID is assigned after a new

node finds any one of reliable nodes. The LBID of the new node are assigned

by the reliable node which gets a join message and the LFID bits are set to

1 because it acts as a representative node. In this LBID assignment, the new

node also creates the LBID routing table according to its LBID. Each reliable

node has the state information such as Join, Level, Full and Leaf. When the

Join bit sets to 1, this node can process the join request and create new LBID

for the new node. The Level bit is the depth value which means how many join

requests is processed in this node, that is, how many routing entries are filled.

The Full bit sets to 1 after the enough reliable nodes join the p2p system and

they are ready to get the transient nodes. The Leaf bit means the number of

transient nodes which is connected to a reliable node. According to these state

information, LBID is assigned automatically and correctly.

The basic algorithm for the LBID assignment is in figure 4.4. When a node

joins to the system and there is no reliable node, the new node has the new

LBID whose all bits set to 1. Otherwise, when any reliable node gets a join

request, it creates new LBID based on the two information which are its LBID

and the Level bit. That is, the levelth bit of LBID sets to the exclusive bit

and this is the new LBID. This simple rule makes the difference of LBID of

any two closest reliable nodes even and each reliable node gets the balanced

and fair ID region. The LBID routing table which is used for routing to any

reliable nodes is also organized when the new LBID is created. The basic rule

is the Nth entry of the routing table has the node information whose Nth bit of

LBID is exclusive to the owner’s LBID. These bit-wise exclusive entries make

the LBID routing table and any node can reach any other nodes. In figure

24

Figure 4.4: Basic algorithm of the NodeID assignment

25

Figure 4.5: The basic concept of LBID routing table (left: LBID 000, right:

LBID 101

4.5, the node whose LBID is 000 has routing entries 100, 010, 001. In this

case, the routing entry 100 is the next routing point for LBID 1** and the

routing entry 010 is the next routing point for LBID 01*. According to these

routing entries, each node can reach any other nodes by LBID. Like figure 4.5,

this LBID routing table has logN of routing entries and the maximum routing

hops are limited to logN , where N is the number of LBID bits. When there

is not proper node information for a routing entry, this entry becomes the

temporal routing entry. In figure 4.6, the first entry of node B is C(101) which

is the right one. However the second entry of node B is G(110) which does

not fit to this entry and this entry is called the temporal routing entry. This

temporal routing entry has the node information which does not matched but

closest to the right node information. When the node which has the temporal

routing entry gets a join request, it forwards the join request to the temporal

node which is ready to process join request. After this forwarding process, the

new node replaces the temporal routing entry with right routing entry and the

LBID routing table is composed completely.

The figure 4.6 shows a simple example of the LBID assignment. When

26

the new node A joins and the target node B gets this join request, the node

B makes a decision which it makes a new nodeID or forward to next nodes.

The main point of decision is the LBID routing table and the target node tries

to fill in the LBID routing table. In this case, the node B treats this join

request, because its third routing entry is empty. According to the basic rule

for routing table which is described on the previous section, the target node

B assigns new nodeID, 000 to the new node A to fill the third routing entry.

After the new node A gets new nodeID, it also makes up the LBID routing

table. To do this, when the target node B responses the request, it gives not

only the nodeID but also its new modified LBID routing table. The node A

checks that each delivered routing entry is the right information for its LBID

routing table according to the basic rule for routing table. If the routing entry

is the right one, it is used, otherwise, it tries to find the right information by

requesting to the wrong one. For example, the third entry of the node A is

B(001) which is the delivered information from B because of it is the right

one. However the second entry is D(010) which is the first routing entry of the

node G, because the node G is not fit for the second entry of the node A and

the node A requests the proper information to the node G. Moreover, the first

entry of the node A is the temporal routing entry. If one node tries to find

the proper node information but it can not, it fill the entry with the temporal

information. This temporal information means that this node may treat the

join process because this temporal information should be fixed with the right

one. After the new node updates its LBID routing table, it should advertise

its information to every node of its LBID routing table to fix the temporal

information.

I describe the join process when the LBID routing table of target node

is not full. If the LBID routing table full, it should forward the request to

the next node which can deal with the join request. First of all, the target

node looks into any temporal routing entries and if there is anyone, the target

27

Figure 4.6: Simple example of the LBID assignment

node forwards the join request to the node which is referred by this temporal

routing entry. Otherwise, if there is no temporal routing entry, the join request

is forwarded by referring to the LBID routing table with descending manner.

At first, a node whose routing table is full forwards the join request to the

first routing entry. If the next node which gets the join request also has

the full routing table, it sends the join request to the second routing entry

because the first entry has the information of the sending node. According to

this descending routing mechanism, the join request is forward to a joinable

representative node.

If the join request is forwarded by referring the last routing entry of any

node, this node tries to find the target node which can treat the join request

among the whole of the representative nodes. In this case, each node just

does not know the whole of the representative nodes, but only knows the L

routing entries where L is the number of the LBID bits. According to this,

one nodes can not notify to all other nodes by itself and the p2p system needs

the efficient and systematic method to visit the whole of the representative

28

Figure 4.7: Message flow to the whole of the representative nodes

nodes. To achieve this, a node sends messages with TTL count value to every

nodes of the routing table. Like figure 4.7, the message for the Nth routing

entry has N − 1 TTL count value, except the 1st entry for whom the message

has 1 TTL value. The target node which gets the message reduces the TTL

value by 1 and the message is forwarded to the M − 1th routing entry, where

M is the position of the target node on the routing table of the sending node.

For example, if the target node is 2nd routing entry of the sending node, this

target node sends the message to its first routing entry. However, if the target

node is 1st routing entry of the sending node, it sends the last message to its

last routing entry. According to this behavior, one node can visit the whole of

the representative nodes. If there is no target node which can process the join

request, the LBID assignment finish and the finalize mechanism starts. This

finalize mechanism visits all of the representative nodes and set the Full bit to

29

Figure 4.8: LFID Table and node assignment (LBID 110)

1 for every representative node to be ready to get the transient nodes.

4.2.3 NodeID Assignment - LFID

After the bootstrap phase, the transient phase starts. In this phase, each node

joins in the system as the transient nodes. Because the transient nodes are

generally composed of the nodes which join/leave frequently, the p2p protocol

should minimize the responsibility of them to reduce the compulsory manage-

ment cost such as the updates of the routing tables and the data copy for

the responsible data and the replicated data which are due to the dynamic

membership change.

Basically the transient node acts as an assistant for the representative node.

Each transient node locates on a subregion according to its static nodeID which

is generated by SHA hashing. Each subregion has LFID table to identify the

region of the transient node and each transient node fill this table. In figure

4.8, the subregion whose LBID is 110 has a LFID table like that. A LFID

table has 4 slots which is identified by the prefix such as 00*, 01*, 10* and

11*. When a transient node join, the empty slot is assigned to this transient

node. Each transient node is responsible for storing and requesting the data

30

Figure 4.9: Routing of join request and LFID assignment

for the ID space from the prefix to the LFID for each slot. The node L is

responsible for servicing the objects whose LFID of their keys are from 00000

to 00111. The node M is responsible the objects whose LFID of their keys

are from 01000 to 01111. The node P has 11110 as its LFID. As the rule of

LBID assignment, the representative node of this subregion has 11011111 as

its nodeID. If LFID of P is 11111, this nodeID conflicts with the nodeID of

the representative node. So, the last slot of a LFID table has 11110 LFID to

avoid the nodeID confliction.

Unlike the LBID assignment, a new node uses the unique hashed value

which is the static nodeID to distribute the transient nodes uniformly and to

balance the number of the transient nodes for each sub-region. The figure

4.9 shows the basic LFID assignment. When a new node joins, it sends the

join request to any one of participant nodes. This join request routes to the

representative node whose LBID is the same to the LBID of the unique node

31

Figure 4.10: Extension of LFID table

key which is generated by hashing the unique identifier of the new node. This

routing process is the most prefix matched method which is generally used

by other p2p algorithms. The target representative node which gets the join

request considers the new node as the transient node and assigns the LFID to

it with the same LBID. To help assigning LFID, every representative node has

the LFID slot which divides the sub-region and each slot manages the transient

node information. In figure 4.9, the new node, K, joins and its static nodeID

is 11101001. At first, it sends join request to node B and B route this message

to node F by using the LBID routing and LBID 111. Finally, the join request

is forwarded to node G whose LBID is 111 and node G check its LFID table.

In this case, the slot with 10* prefix is empty and node K is assigned at this

slot. Finally, the new node K gets new nodeID, 11110111, and joins at this

system.

Sometimes, many transient nodes are concentrate on a subregion and there

is no empty LFID slot. In this case, LFID table should be extended. Like

figure 4.10, when the new node A joins and there is no empty LFID slot, its

32

Figure 4.11: Node availability update

first LFID slot is divided by two slots. That is, 00* prefix is divided by 000*

prefix and 001* prefix. In this case 001* prefix is already assigned to node L

and 000* prefix is assigned to new node A. This LFID table is flexible and it

can manage various number of transient nodes.

According to this behavior, the most nodes which join/leave frequently act

as the transient nodes and the behavior-aware p2p protocol can reduce the

compulsory maintenance overhead by assigning the small ID region to them.

4.3 Data Management

The general servers have very high availability and the data management on

them is more simple and there is few overhead. However, in the p2p systems,

unlike the general servers, the participants have very low availability. In this

case, to preserve the availability of data, there are many replications for the

data. These data are the basic p2p system information such as routing in-

formation and node information and the object data which is managed by

33

each node which is responsible for some ID region. Previous DHT based p2p

systems manage the replication by using the sequential node list such as the

successor list for the chord and the leaf set for the pastry. This approaches

take too much overhead to preserve the replications when the join/leave occurs

frequently.

In the behavior-aware p2p protocol, each representative node knows not

only the the availability of itself, but also the availabilities of the other nodes

such as transient nodes and LBID routing entry nodes which is managed by

the representative node like figure 4.11. In this case, the plentiful information

of the availabilities is exploit to preserve the data availability of each sub-

region above the target availability and reduce the data management traffic

according to the dynamic membership. That is, more available nodes replicates

data, more data traffic the p2p system can reduce when the nodes frequently

join/leave. In figure 4.11, the representative nodes B for the subregion 010

knows its LBID routing table and its transient nodes. Basically, the routing

entries are representative nodes and they have more available than other tran-

sient nodes. However, these representative nodes are mainly responsible for

each subregion and take many jobs. So, in each subregion, the representative

node selects the replicas among the transient nodes preferentially, then the

routing entries are selected. In this case, the transient nodes which has very

few availability such as node R in figure 4.11 are not selected as replicas.

4.3.1 Availability Prediction

I assume that the availability is the prediction value how long a node is alive,

because in other researches[11][14], the long lived nodes generally have the

large bandwidth and the big computing power. The figure 4.12 shows this

availability prediction mechanism. The Mean Time To Failure and the Mean

Time To Recover are used to estimate the node availability. MTTF is the

average value how long a node is alive after it joins and MTTR is the average

34

Figure 4.12: Node availability prediction

value how long a node is sleep after it leaves. TTF and TTR are obtained

by using the last join time, the last leave time and the current join time.

Unlike TTR, the TTF is periodically updated by using the current time and

the current join time. The MTTF and MTTR is obtained by the weighted

average of TTF and TTR. The node availability is computed with the equation,

MTTF/(MTTF + MTTR). Any node gets its availability by using this process

and notify the availability to connected nodes such as a representative node

and transient nodes on the same sub-region when it joins the p2p system.

Moreover, after the node joins, it periodically estimates its availability and

notifies the new value for the fresh information.

Data Availability means the total availability when the multiple nodes have

the data. This data availability is obtained by subtracting the probability of

that all nodes which have the data leave from 1. That mean if only one node

35

Figure 4.13: Data Replication Set and its operation

is alive, the data is available.

4.3.2 Data Replication Set

Each representative node is responsible for managing the LBID routing table

and storing the objects which is in the sub-region. To keep the data availability

of the stored information over the target availability with small maintenance

cost, the representative node manages the data replication set which is com-

posed of more available nodes among the transient nodes and the nodes of

the LBID routing entries. The figure 4.13 shows the operation of the data

replication and its target availability is 0.99. In this figure, Node H (0.85)

means its availability is 0.85 and Data (0.995) means its data availability is

0.995. When the transient node P leaves, the representative node just up-

dates the LFID slot, and when the transient node Y joins, the representative

node just updates the LFID slot and copies the data of new id range which

the node Y is responsible for. That is, because these transient nodes hardly

36

become a member of the replication set, the joins/leaves of them make little

management cost. However, when the node L which is the one of the data

replication set leaves and the total availability decreases below the threshold

value(0.985 < 0.99), it should select a new replication to keep the high data

availability. It does not select the node with the highest availability , but

computes the estimated data availability with the every node in the order of

the node availability until the estimated value is bigger than the target value.

In this example, it first tries Y but this node is in no condition to keep the

data availability, and it selects S because of the computed data availability is

bigger than the target availability(0.992 > 0.99). This behavior prevents that

the replications converge on few reliable nodes.

4.3.3 Candidate Node

When the reliable node creates the data replication set, it selects more available

nodes among the transient nodes and routing entry nodes. In this case, most

of the replicate nodes are the routing entry nodes which are the reliable nodes.

However, these reliable nodes do too much jobs and the behavior-aware p2p

protocol should prevent the additional overhead for them. Moreover, when

the reliable nodes leave or fail, the alternative nodes which replace the left or

failed reliable node with fast response time are needed.

To achieve these, some transient nodes for the data replication set are

selected. These more available transient nodes is called the candidate nodes.

These candidate nodes are included in the data replication set, and replicate

the routing information such as the LBID routing table and the LFID slot

and the data which is in the responsible range of the reliable node. When the

reliable node leaves or fails, the most available candidate node replace it by

changing transient nodeID to reliable nodeID. This make the failure recovery

process easier and faster.

37

Figure 4.14: Lookup Operation

4.4 Lookup

The lookup process of the behavior-aware p2p protocol is similar to the DHT

base p2p protocol. The figure 4.14 shows the simple example of the lookup

operation. The normal node Y wants to find ”d3.avi” file and the static object

key of d3.avi is 10000101. First of all, node Y check its LBID routing table with

the object key 10000101. If the LBID of the object key is matched to the node

Y, node Y tries to find the right LFID slot from the LFID table. However, in

this case, the LBID of the object key is different to node Y and node Y finds

the next routing node from the LBID routing table. This selection is same to

the DHT base p2p and the node selects a next routing node as the most prefix

matched entry to the object key. In this figure, the next routing node is H and

H also selects next routing node D by using most prefix matched method.

Finally, lookup request is forwarded to node D whose LBID is 100 which is

38

same LBID of the object key. After finding right subregion, the representative

node D checks its LFID table. If the right slot is empty, the representative

node gets this lookup request. Otherwise, the representative node forward this

lookup request to the transient node which is assigned by the right LFID slot.

In this figure, the object key 10000101 is managed by the first LFID slot whose

prefix is 00* and the node L is assigned by this slot. So, the lookup request

is forwarded to the node L and node L returns the wanted object ”d3.avi”

to node Y. According to this assistant, the representative nodes lessen their

responsible loads.

The lookup operation is composed of the LBID lookup and the LFID

lookup. The LBID lookup takes O(logNr) cost where Nr is the number of

the representative nodes and the LFID lookup takes O(1) cost. Generally, Nr

is about 0.2 ∗ N where N is the number of total nodes because of the char-

acteristics of participant nodes in the p2p systems. Consequently, the total

lookup cost is proportional to O(logN) where N is the number of total nodes.

That is, this lookup operation is scalable.

4.5 Node Failure Recovery

In the p2p network, the important information is distributed well. In this

case, when a node fails, the probability of losing the information increases. To

prevent this fault, the p2p protocol support the replication mechanism. In this

section, the reaction and the management cost for the failure are described.

4.5.1 Transient Node Failure

The failure of a transient node is detected, when there is no more LFID slot

update messages or there is no more responses for a request. This transient

nodes reside below the reliable node and only support small portion of id space

which is determined by the LFID. The failure of the transient node can not

39

Figure 4.15: Failure Recovery for Reliable Node

affect the important information. According to this features, the LFID slot

update is the only management job which needs little traffic.

4.5.2 Candidate Node Failure

The failure of a candidate node is detected with similar conditions of the

failure of a transient node, because a candidate node is also a transient node.

However, because the candidate node is included in the data replication set,

the failure recovery is more complicate. The reliable node updates the LFID

slot and choose new candidate node if there is need for replication. When the

new candidate node is selected, it replicates data and the routing information.

4.5.3 Reliable Node Failure

The failure of a reliable node is detected, when there is no response for the

routing or the updating. However this failure of the reliable and stable node

occurs rarely. Because the reliable node do important jobs, the failure recovery

should be done as soon as possible. To do this, the candidate nodes are used

like figure 4.15. When the reliable node fails, the one of the candidate nodes

changes its id nodeID to the nodeID of the failed reliable node. After this

40

nodeID changing, the new reliable node chooses new candidate nodes and

updates the routing information and send notification of the new reliable node

to the all routing entry nodes. This failure recovery process is more complicate

and heavier than the transient node, but the number of the failures is few and

this feature prevent increasing the management cost very much.

4.5.4 Update Messages

When churn occurs, affected nodes should update its routing tables such as

DHT, LBID table and LFID table to ensure the correctness and efficiency of

the lookup process. In general DHT based p2p, when one node joins or leaves,

each affected nodes update its DHT. It takes O(logN)2 cost because there are

O(logN) affected nodes and it takes O(logN) cost to find one node.

However, in the behavior-aware p2p, the update cost is depend on the type

of leaving node. When a transient node joins or leaves, the affected nodes

are the representative node and the transient nodes on the same sub-region.

Because the transient node is identified by the LFID table, each affected node

updates its LFID table only. That is, the update cost is O(Nt), where Nt is

the average number of transient nodes for a sub-region. When a representative

node joins or leaves, it takes more cost than a transient nodes. This change of a

representative node affects the transient nodes on the same sub-region and the

representative nodes of its LBID table. Moreover, it also affects the transient

nodes of the representative nodes of its LBID table, because every transient

nodes contain the same LBID table of its representative node. According to

these, the update cost is O(Nt)∗(O(logNr)+1), where Nt is the average number

of transient nodes for a sub-region and Nr is the number of representative

nodes.

The update cost for representative nodes are bigger than transient nodes.

However, the most of churn is caused by the transient nodes. Consequently, the

majority of update cost becomes about O(Nt) for the behavior-aware p2p. In

41

this case, if O(Nt) is smaller than O(logN)2, the behavior-aware p2p updates

its routing table more efficiently than the DHT based p2p.

42

5. Performance Evaluation

5.1 Simulation Setup

I make a p2p simulator which emulates the node behavior on the application

layer. The previous DHT based p2p systems such as pastry and chord and

the behavior-aware p2p systems are implemented. 160 bit ID space is used to

identify nodes and the number of LBID bits changes according to the number

of the representative nodes which are assigned by the total number of the

participant nodes. The total number of nodes are varied from 512 to 8192.

The comparative protocols are follows : DHTP means the DHT based P2P

and DHTPA means the naive replication approach with availability value.

BAP(1:Nt) means the behavior-aware p2p in which the number of represen-

tative nodes are 1/Nt*(total number of nodes). That is, each representative

nodes obtain about Nt transient nodes. For example, when the total number

of nodes is 2048, BAP(1:64) has 32 representative nodes and its LBID bit is 5.

At the same case, BAP(1:16) has 128 representative nodes and its LBID bit is

7. The table 5.1 shows the variation of LBID for each BAP according to the

number of nodes. When Nt is big, the number of representative nodes is small

and LBID bit is also small. When the number of node increases, LBID also

Number of Nodes 512 1024 2048 4096 8192

BAP(1:16) 5 6 7 8 9

BAP(1:32) 4 5 6 7 8

BAP(1:64) 3 4 5 6 7

Table 5.1: LBID Variation for each BAP

43

Figure 5.1: Distribution of lifetime with various mean of Poisson distribution

increases to keep the number of transient nodes for each representative nodes.

The value of target availability is 0.999 for the naive replication approach

with availability value and the behavior-aware p2p. This value is the same to

the 10 replicas for the DHT based p2p where the average node availability is

0.5. That is, the DHT based p2p does not consider the behavior of nodes and

it sets the availability of every node to the average value for total nodes.

The participant nodes behave individually and each node has a different

lifetime and various join/leave durations. To make the dynamic characteristic,

I use the Poisson distribution to identify the lifetime of each node. To assign

join/leave duration of a node, the exponential distribution is used. The figure

5.1 shows the lifetime distribution with various mean of Poisson distribution.

When the mean is small, most nodes have short average lifetime and frequently

join/leave. Otherwise, when the mean is large, most nodes have long average

lifetime and they tend to be very reliable. According to this Poisson distri-

44

bution with 4 of mean value, the lifetime of 80% of total nodes is below 60%

of total simulation time, that is, only 20% of total nodes have the reliable

server-like profile. Recent researches [11] measure the life distribution of the

p2p nodes and show the similar distribution, and I can tell that this distribu-

tion is similar to the real world. These characteristics of nodes are assigned

when the nodes are created. By using the exponential distribution with these

characteristics, I can generate the on-time for which the nodes are on the p2p

system and the off-time for which the nodes are off.

5.2 Data Maintenance traffic

5.2.1 Various Number of Nodes

The main problem of the current DHT p2p is the high management cost. In the

figure 5.2 and the figure 5.3, the behavior-aware p2p reduces the management

cost effectively. To evaluate this cost, I assume that each node obtains same

number of objects, that is, if the total number of nodes is 100 and the total

number of objects is 100000, and if the total number of nodes is 200, the

number of objects is 200000. The number of total nodes is varied from 512 to

8192.

In this case, the behavior-aware p2p reduces the data management cost

extremely. The main reason of this improvement is the behavior of transient

nodes. In DHT based p2p, the frequent join/leave of transient nodes cause

the compulsory copies and update cost for routing information. The naive

replication approach with availability value can reduce more traffic than DHT

based p2p according to the careful selection of replicas with availability value.

However, this naive approach can not ensure efficient use of the reliable nodes

whose availability is high and it is also affected by the frequently join/leave

nodes. However, in the behavior-aware p2p, the dynamic behavior of transient

nodes hardly affects the data availability and this churn can not generate

45

Figure 5.2: Comparison of Total Data Traffic Usage

Figure 5.3: Comparison of Average Data Traffic Usage

46

much data traffic. According to these, the behavior-aware p2p can reduce

more management traffic to keep the same level of the high data availability.

One of facts, I should note, is when the number of representative nodes

increases, the management traffic also increases. That is, BAP(1:64) reduces

more traffic than BAP(1:32) and BAP(1:16). On the same node character-

istics, the BAP(1:32) needs more representative nodes than BAP(1:64), and

the average availability of the representative nodes of BAP(1:32) is less than

BAP(1:64). In BAP(1:32), the transitions for the representative nodes occur

more than BAP(1:64) and BAP(1:32) exhausts more network bandwidth than

BAP(1:64). According to this fact, when the number of total nodes changes

and the system wants to keep its data availability with small maintenance over-

head, LBID bits should be changed to the proper number of bits according to

the current network state.

5.2.2 Various Lifetime

Figure 5.4 shows the data traffic with various mean of lifetime. The mean of

lifetime is the average value of the Poisson distribution. If this mean increases,

the average lifetime of nodes also increases. As expected, when the average

lifetime of nodes increases, the data traffic decreases in every cases. The data

traffic value of the DHT based p2p with mean 7 is greater than any other

values of the behavior-aware p2p. It also notes that the behavior-aware p2p

can save much more data traffic than the DHT based p2p. In this figure,

there is no intersection with each other systems. That is, every system has

the similar proportion of decrease of the data traffic according to the increase

of the lifetime. Consequently, in the behavior-aware p2p, when the average

lifetime increases, there is no jobs to enhance the system. However, if the

average lifetime decreases, to keep the average data traffic the behavior-aware

p2p changes its LBID to small. For example, when the behavior-aware p2p

sets LBID to 7 and works with mean value 7, if the average lifetime decreases

47

Figure 5.4: Data traffic with various mean of lifetime, node number = 2048

with mean value 6, to keep the data traffic level, the behavior-aware p2p should

decrease its LBID from 7 to 6.

5.2.3 Data Traffic Usage in Time Domain

For more detailed inspection for the behavior of the new p2p, I get the data

traffic usage in time domain. The figure 5.5 shows the result. The data traffic

usage changes according to the behaviors for each time quantum. If many

churn occurs for a time quantum, in this quantum, much data traffic is used.

In this figure, basically the behavior-aware p2p saves much more data traffic

than the DHT based p2p for every time quantum. Moreover, the tendencies

of the data traffic for the behavior-aware p2p differs from the DHT based p2p.

It means that the behavior-aware p2p can minimize the effect of the churn

of the transient nodes. The representative nodes get the main responsibility

for the data availability and the transient nodes just assist them. This rule

48

Figure 5.5: Data traffic usage, node number = 2048

makes the transient nodes free from the data copies of the replicas for the

data availability under churn. Moreover, the tendencies of one of behavior-

aware p2p differ from each other behavior-aware p2ps. The main reason is the

different LBID bits. When the LBID bits differ, the number of representative

nodes and the number of subregions also differ. According to this difference,

the distribution of nodes also differ from each other and the data traffic usages

have various tendencies.

The figure 5.6 and the figure 5.7 shows the detailed data traffic usage for

join and leave in the behavior-aware p2p. The figure 5.6 shows the join data

traffic that means the data traffic usage when a new node joins. In this figure,

there is no average level to classify each system. When a new node joins,

generally this new node acts as a transient node and there is only small data

copy for the LFID slot. Because of this behavior, the average data traffic of

join data traffic is small and it is hard to identify the system with the join

49

Figure 5.6: Join Data traffic usage, node number = 2048

Figure 5.7: Leave Data traffic usage, node number = 2048

50

Figure 5.8: Data traffic usage, node number (1024-2048-4096-2048-1024)

data traffic. However, the figure 5.7 shows that the behavior-aware p2ps are

easily classified. This figure shows the leave data traffic that means the data

traffic usage when a node leaves. In this figure, a behavior-aware p2p with more

representative nodes(BAP(1:16)) use more data traffic than a system with less

representative nodes(BAP(1:64)). When the system has more representative

nodes and more subregions, the average availability of nodes for a subregion

decreases. In this case, the possibility with that a node leaves for a subregion

increases and each subregion needs more replicas and more data traffic.

5.2.4 Data Traffic Usage with Dynamic Network state

To find out how the behavior-aware p2p follows up the dynamic network state,

when the number of total nodes is changed on the fly, the data traffic usage

for each p2p system is observed. The figure 5.8 shows the data traffic usage

with the dynamic network state. The number of nodes initially 1024 and it

51

Figure 5.9: Join Data traffic usage, node number (1024-2048-4096-2048-1024)

Figure 5.10: Leave Data traffic usage, node number (1024-2048-4096-2048-

1024)

52

Figure 5.11: Average Data traffic usage, node number (1024-2048-4096-2048-

1024)

changes to 2048 at 50. At 100 it increases to 4096 and finally it decreases to

2048 at 150. In this figure, P means the DHT base p2p and BAP means the

behavior-aware p2p with 6 bit LBID. This BAP is same to BAP(1:16) when

the number of nodes is 1024, BAP(1:32) when the number of nodes is 2048 and

BAP(1:64) when the number of nodes is 4096. Basically, BAP reduces more

data traffic than DHT based p2p. When the number of nodes increases, the

level of data traffic also increases for every system. Especially, at the instant

of the change, there is a peak traffic.

For more detailed inspection, I divide the data traffic to the join data

traffic and the leave data traffic. The figure 5.9 shows the join data traffic

usage. In DHT base p2p, it takes much join data traffic and there is a peak

traffic when the number of nodes increase. However, in BAP, the join data

traffic is very small even if it increases when the number of nodes increase and

53

there is no peak traffic. It means the normal nodes which frequently join/leave

as transient nodes can not exhaust the data traffic. The figure 5.10 shows the

leave data traffic usage. According to this figure, It is found out that the main

data traffic usage of BAP is caused by the leave data traffic. When the number

of nodes increases the leave data traffic also increases.

The figure 5.11 shows the average data traffic of each system. Surely, the

average data traffic for the DHT based p2p has no tendency. However, I find

out that the average data traffic decreases, when the number of nodes increases

for BAP. In this case, according to the result from previous subsection, the

average data traffic of BAP(1:16) is bigger than BAP(1:32). So, when the

number of nodes increases and the LBID bits does not change, the average

data traffic decreases. However, I note that in this case, the load of the rep-

resentative nodes increases because the number of transient nodes for each

representative node increases. When the number of transient nodes increases,

the responsible data range and number of objects for a representative nodes

also increase. Moreover, because a representative node and other transient

nodes of a same subregion should know the same LBID table and LFID table,

when the number of transient nodes increase, the update message should be

increases. Consequently, when the number of nodes increases, I should con-

sider the tradeoff between the reduction of the average data traffic and the

increase of the load of a representative node. According to this tradeoff, the

LBID bits are changed to fit the behavior-aware p2p to the current network

state.

5.3 Lookup Hops

In the p2p system, the lookup cost is also important parameter for the scalabil-

ity because there are too many participants. Figure 5.12 shows the comparison

of the lookup hops. For all systems, the lookup hops are proportion to the Log

54

Figure 5.12: Comparison of Lookup Hops

N, where N is the total number of nodes. The behavior-aware p2p performs

more efficient lookup than normal DHT. The reason is that the behavior-aware

p2p system uses the representative nodes to route the lookup request and the

number of these nodes are much less than the total nodes. These represen-

tative nodes are more stable and more powerful than other nodes and they

are durable nodes for the many routing requests. Additionally, the transient

nodes assist the representative nodes to take the request for the ID region and

the load of the representative node are reasonable.

In the figure 5.12, the slope of the DHT p2p is steeper than the Slopes of

the behavior-aware p2p. In general DHT p2p, the routing table is filled with

unreliable nodes. When these nodes leave, many routing entries can contain

wrong and failed routing information. This wrong information makes many

routing faults and it takes times to route to the right destination. According

to this fact, the slope of DHT p2p is steeper. However, in the behavior-aware

55

Figure 5.13: Average Control Messages for each BAP, node number = 2048

p2p, every routing entries are filled with reliable nodes and there are very few

routing faults. This make the slopes of the behavior-aware p2p gentler than

DHT p2p.

Moreover, when the LBID bit is big, the average routing hop is also big.

That is, BAP(1:64) has less representative nodes than BAP(1:32) and BAP(1:64)

also has less routing table than BAP(1:32). According to this small routing

table, BAP(1:64) needs small routing hops than BAP(1:32).

5.4 Control Traffic

Figure 5.13 shows the needed control messages for the various behavior-aware

p2p. There are 3 types of control messages: LFID table update, LBID table

update and Join Messages. LFID table update is affected by the number of

the transient nodes for a representative node. LBID table update and Join

56

messages are affected by the number of the representative nodes. When the

number of transient nodes increase, LFID table update increases. As the same

way, when the number of representative nodes increase, LBID table update

and Join messages increases.

In this figure, BAP(1:64) needs most control messages and BAP(1:16) uses

least messages. This is because the majority of the control messages for the

behavior-aware p2p is the update for the LFID table. BAP(1:64) keeps the

average number of transient nodes in about 64 and in BAP(1:16), the average

transient nodes for a representative node is about 16. That is, BAP(1:64) has

4 times more transient nodes than BAP(1:16). On the other side, BAP(1:16)

has 4 times more representative nodes than BAP(1:64). According to this, the

average number of control messages for the LFID table is about 4 times more

than BAP(1:16). Consequently, even if in BAP(1:64) LBID table update and

join messages are less than BAP(1:16), BAP(1:64) needs about 2.5 times more

control messages than BAP(1:16).

To find out the more characteristics of the control messages, figure 5.14

and figure 5.15 show the average control messages on various number of nodes

and various lifetime. Generally, behavior-aware p2p uses less control traf-

fic than DHT based p2p. As described, BAP(1:64) uses more control traffic

than other BAPs. When the number of nodes increases, the average control

messages for any p2p increase. However, in figure 5.15, on various lifetime,

the behavior-aware p2p is not always better than DHT based p2p. When the

mean of lifetime increases, the average control messages for DHT based p2p de-

creases. But, even if BAP(1:16) decreases the number of control messages and

BAP(1:32) preserve the same level of the average control messages, BAP(1:64)

increases the control messages more than DHT based p2p. The main reason is

the overprovision for the number of transient nodes. That is, when the mean of

lifetime increase, the number of reliable nodes which have a server-like profile

increases and in BAP(1:64), many reliable nodes acts as transient nodes. In

57

Figure 5.14: Comparison of Average Control Messages for various number of

nodes

Figure 5.15: Comparison of Average Control Messages for various mean of

lifetime

58

this case, the number of transient nodes which are affected by churn of the

normal and weak nodes increases and LFID table update increase enormously.

To prevent this compulsory control traffic, the behavior-aware p2p increases

its LBID and has more representative nodes.

5.5 Load Balance

The figure 5.16 shows the lookup distribution for the total nodes. In this

figure, I define the lookup load of a node as the number of lookup requests

of it divided by the average number of lookup requests of whole nodes. As

the nature of the previous DHT based p2p, the load is distributed to the

whole of nodes by the shape of the normal distribution and the average load

of nodes is nearly 1. This behavior causes the heavy information maintenance

overhead because the nodes which join/leave very frequently can be responsible

for the big ID region. On the other hand, in behavior-aware p2p, the load

distribution can be classified into the representative nodes and the transient

nodes. About 75 percent of nodes have less load than other nodes because these

nodes act as transient nodes which join/leave frequently and they takes the

responsible for small ID region which is assigned by the LFID. The average load

of the transient nodes is about 0.4 and these nodes are distributed uniformly.

Otherwise, the representative nodes take much more load because they are

alive for a long time and represent for the sub-region. The average load of

these nodes is about 2. Moreover, when the number of representative nodes

increases, the average load of transient node increases. The main reason of this

result is that when the representative nodes increase, the transient nodes get

more chances to help the representative nodes. That is, the transient nodes

act as candidate nodes and get more jobs to help the representative nodes.

The representative nodes get more loads than the transient nodes and it

needs to balance the load of the representative nodes for the fairness. The

59

Figure 5.16: Lookup distribution for the total nodes

Figure 5.17: Lookup distribution for the representative nodes

60

figure 5.17 shows the load distribution for the reliable nodes which are about

20 percent nodes of the whole participant nodes. The behavior-aware p2p

system balances the load more than the previous DHT based p2p because in

the behavior-aware p2p the sub-region is distributed evenly and each reliable

node acts as a representative node to be responsible for the sub-region. Some

jitters are appeared because the transient nodes assist the representative nodes

and the transitions for the representative nodes occur. Moreover, BAP(1:16)

distributes the load more uniformly than BAP(1:64) and it means that if the

system estimates the number of reliable nodes well, each reliable node takes

well balanced load.

The figure 5.18, 5.19, 5.20, 5.21 show the data load distribution of each

nodes when the total number of nodes is 2048 and the mean of lifetime is

4. In these figures, X-axis means the nodes that are arranged by its lifetime.

That is, on X-axis, the right side means reliable nodes with long lifetime and

the left side means normal nodes with short lifetime. Y-axis means the data

traffic that is used by each node. The figure 5.18 shows the load distribution

of each node in DHT p2p. There are not any relation between the data traffic

and the lifetime. Some normal nodes exhaust more data traffic than other

reliable nodes. Each node uses very big data traffic too. Otherwise, the figures

5.19,5.20,5.21 show the relation between the data traffic and the lifetime. In

the behavior-aware p2p systems, more reliable nodes get more data traffic

and normal nodes get less data traffic. That is, the reliable nodes act as

representative nodes or candidate nodes and they take data traffic when the

churn occurs. Moreover, when the number of representative nodes increases,

normal nodes get more data traffic. That is, in BAP(1:16), normal nodes

copy more data for data availability than BAP1:64. The main reason is that

normal nodes can become candidate nodes and they take some data traffic

when the churn occurs. However, in BAP(1:16) the peak data traffic for a

representative node is smaller than BAP(1:64). It means that BAP(1:16) has

61

Figure 5.18: Data traffic distribution of each node, (pastry, 2048), mean of

lifetime = 4

Figure 5.19: Data traffic distribution of each node, (BAP(1:64), 2048), mean

of lifetime = 4

62

Figure 5.20: Data traffic distribution of each node, (BAP(1:32), 2048), mean

of lifetime = 4

Figure 5.21: Data traffic distribution of each node, (BAP(1:16), 2048), mean

of lifetime = 4

63

more well balanced representative nodes than BAP(1:64) and representative

nodes on BAP(1:16) have less works than BAP(1:64).

The figure 5.22, 5.23, 5.24, 5.25 show the data load distribution when

the mean of lifetime is 7. In this case, there are more reliable nodes than

the previous situation and the average data traffic usage decreases. Like the

previous results, in DHT based p2p, there is no relation between the data

traffic and lifetime of nodes and in the behavior-aware p2p, the reliable nodes

take more data traffic than the normal node. However, in BAP(1:16), the

tendency of the data traffic is similar to the DHT based p2p. This is because

BAP(1:16) has more representative nodes than BAP(1:64) and the many of

transient nodes of BAP(1:16) are reliable nodes. That is, the characteristic

of BAP(1:16) is similar to DHT based p2p which considers p2p system as the

homogeneous system. However, though the shape of the data traffic usage is

similar to each other, the average data traffic of BAP(1:16) is much less than

DHT based p2p. Consequently, when the p2p system has more reliable nodes

than normal nodes, the behavior-aware p2p increase its LBID to balance the

load of the participant nodes.

This feature that classifies the load according to the characteristics of nodes

is very useful for the p2p system on the heterogeneous network that is consist

of the various nodes such as servers, workstations and PCs. The behavior-

aware p2p system can exploit these powerful components efficiently and easily

because the server-like nodes locate for the representative nodes automatically.

64

Figure 5.22: Data traffic distribution of each node, (pastry, 2048), mean of

lifetime = 7

Figure 5.23: Data traffic distribution of each node, (BAP(1:64), 2048), mean

of lifetime = 7

65

Figure 5.24: Data traffic distribution of each node, (BAP(1:32), 2048), mean

of lifetime = 7

Figure 5.25: Data traffic distribution of each node, (BAP(1:16), 2048), mean

of lifetime = 7

66

6. Conclusions

This dissertation suggests the behavior-aware p2p protocol for high data avail-

ability to reduce the information maintenance overhead by exploiting the het-

erogeneity of participant nodes efficiently. Unlike the DHT based p2p, the

nodeID of a node changes on the fly according to its behavior on the p2p sys-

tem to support the p2p system efficiency and each nodes takes the different

responsibility in accordance with its nodeID. The representative node which

is the more reliable and more powerful node acts as the more important role

such as the routing and the replication. The transient node which joins/leaves

very frequently acts as the simple role to reduce the information maintenance

traffic. The Load-Balanced ID identifies the representative nodes to balance

the loads and the Load-Free ID identifies the transient nodes to reduce the

responsibility and eliminate the compulsory maintenance overhead.

This behavior-aware p2p is very good for the p2p system on the hetero-

geneous environment which is consist of the various kinds of nodes such as

servers, workstations and PCs. The server-like nodes are located at the posi-

tion for the representative nodes automatically and the other nodes act as the

transient nodes. This dynamic change of the positions of each node can help

exploiting the more reliable and more powerful nodes efficiently and easily.

However, this p2p protocol may over-provision for the representative nodes

and this may decreases the performance of the p2p system. To compensate

this lack, the adaptive method for the whole state of nodes to keep the proper

number of representative nodes is needed.

67

�� ��� ���

������ ������ ��	
������ �����
��� �Æ���
�����	-����� ����-��-���� ������
��

�������� ������ ����� ��	
�	������� Distributed Hash table(DHT) 	
����Æ �
�
-��-

�
�
 �
������� ��	�� ���������
 �������
�
�����. �
��� ��	
�	������ �������� ������

�
������
 ��
����
�����������	�!"�������#$���
��%���&�%�'()������
�����*�

���+��		,���-��
�����./��0��������./�����.+�1

���
�
-��-�
�
�
��������

2�0� �����	�� ����		��� 3�1
�		 �!4
 5�6������ �
 ��
78 ���'(, �
�� 9�Ǳ�� ��� 5�

6�����Æ
���
�	�� ����!/������� 9��� ��Ǳ�� ����! 5�6�����
 ��	������ ���:; �
'(, �

4
	�� ��	����� 9�Ǳ�� DHT ,���-��
��Æ �		������ <=1
 +�	
 � 	��
�	>� ���?
 ��@/

���
A/<�������+�:;!�����+�:;
����.BC����
,	
����Æ�����������0����
�
���

�
 �
����������Æ #$���
����� DE�
FG ������� ���!�"	�� ����#�, DE�
FG�Æ <=#$�		���

#$���
��%��� >�"��+��		����� ��./���		 HI$�%+�� ���.

&�� ��!� ��	
�	��� ��'��� DE�
FG <=#$�		��� >�"��+�	
 � 	�� ���()�-���1
 �
�
-��-

�
�
,���-��
����JK#��	����.�
,���-��
����)������"%���LM,�
�
-��-�
�
�
��

������ ����! 5�6�����Æ �����	�� ���()���� ���1
+�'(#$���
��%��� 5�6�������)������"

%���LM
�	>� ���?
 ��@/
����� !����#�� �����. 	
����Æ DHT 	
����Æ �
�
-��-�
�

,���-��
������		 �#�$%+�1
 &���		 5�6�2��
N
*��)����	����. �
 2��
N
�		 ��� 5�

6����������$�#��
������		<=��#	��'�(,�O*������#�2��
�
0�HIP�%)&0�HIQ*'�+���'�(

������ ./,-��"��*��)������"%���LM �'(��� �� �����. �
4
	�� �#�$%+�1
 &���		 <=R
S�

2��
N
�		 ,���-��
���� .��+�	+�:; "���		��
�� ����		 "��
����� ���1

��, ��� 5�6�����Æ

����		�� 9���
��)�#	�� � T
����
��/��	�� � ���
��� +�*���� +�	
 �0*���:;
����. ���

()����1
 �
�
-��-�
�
 ,���-��
������		 �
4
	�� �#�$%+�1
 &���		 5�6� 2��
N
 ��

��� �#�$%3� 3����	�� ���
P���� 5�6�2��
N
*��)����	����. �
 ���
P���� 5�6�2��

N
�		 Load Balanced ID(LBID)Q* Load Free ID(LFID)�� ���		
����. LBID�		

68

>��� #��
�	
���
'(�		����
 ,�-��� 5�6�����Æ � ���
��� ���� .�	(��+�:; ��
/�� ��������

���*���� +�'(LFID�		 ��#���
���
'(�		����
 �1�	�� 5�6�����Æ � ���
��� !���
'(�
���

5�6�����

���
�+�:; �
������� ����!/�����*�� ��
UV /����#WX	��
�	>� ���?
 ��@/
��

���!����#�����*����	����.�
���
P����5�6�2��
N
�		����Æ�Æ!�"������?
"���+�

���5�6�����Æ
�	>�
�����3�1
'(��
/��
����.YZ��0��2��
N
�		[����AK\K1
*��]̂

?
+��		 5�6��Æ 5�6�2��
N
Q* ,1-_/ à���2S� 3��b/�� 9�����
��)�#	�� 2��
N

3� ��
/��
����. YZ��0�� 2��
N
3� ��
/�����UV�		 cd 5�6��Æ ����		e4�		 ���:f��+�
 2�

�
N
3���
/���
1

��,5�6�3��
�
-��-�
�
�
�����������!+�'(����		()�#��5�6�

�Æ ()�"���� 9����� 5�6�2��
N
�		 �#�+�:; �
'(, g��0.h�
��)�#	�� � T
Q* � ���
���

+�	
 � 	�� 5�6�2��
N
*�� 3�1
:;
����. >��� #��
�	
���
'(�		����
 ,�-��� 5�6����

��� 0��� DE�
FG�Æ <=#$�		��� >�"��+�'(DE�
FG�Æ ������Æ
�	����		��� >�"��+�:;

����. ��#���
���
'(�		����
 �1�	�� 5�6������� �		����
 ,�-��� 5�6������� *�Q*0��		 � �

��
��� +�'(/�5/��+��		 DE�
FG�Æ ��	� ���� JK	����"%���LM, �
 5�6�����
 ����! �����

*��
���
�+�:; +�BC��*� DE�
FG�Æ <=#$�		e4 DE�
FG�Æ ������Æ #$����		�� ��	���

��� ij�Æ 0�1
 &��*���� 	����.

YZ��0�����()�-���1
�
�
-��-�
�
,���-��
��Æ�		������������+�	
� ./���
�2/

�� 6�?
&�� �0�����Æ �
34�kl�
FG*�� JK"��+�� ���. �
�� 9���, ���()�-���1
 �
�
-��-

�
�
,���-��
����	
����Æ DHT	
����Æ�
�
-��-�
�
,���-��
���m
./����'���

DE�
FG <=#$�		���
�����
�	>� ���?
 ��@/
����� 3�1
'(>�"��	�����		������ &���� ���

�'���. n�	�� DE�
FG �����*� 	
����Æ DHT 	
����Æ �
�
-��-�
�
Q* '�+�
 #$���
��

������ &���� ����'���. �
4
	�� ���()�-���1
 �
�
-��-�
�
 ,���-��
���� 	
����Æ DHT

	
����Æ �
�
-��-�
�
 ,���-��
���� �12JK �
5��?
o;�
3#���
�������
UV 3�"�� ��# 0.

����
 �
�'�46� 5�6�����Æ
���
�	�� ����!/������� 9�Ǳ��
�	>� ���?
 ��@/
����� #$e4
��

%��� !����#�� ���'(, ��p
Q* ������
�
���3� ()��
��)�����
�		 ����!	���� ����Æ�Æ

���?
"��Æ 5�56���+�
 ��� 5�6�����Æ ����		�� 9��� "�()�
��%��� &����6��� � ���
��� ��"

%���LM #$���
����� �
�
-��-�
�
 �
�������� ���		+�*���� 	����.

69

References

[1] K.Kim and D.Park. Efficient and Scalable Client Clustering For Web

Proxy Cache. IEICE Transaction on Information and Systems, E86-D(9),

September 2003.

[2] Z. Xu, Y. Hu and L. Bhuyan, Exploiting client cache: A scalable and

efficient approach to build large web. In Proceedings of IPDPS04, April,

2004.

[3] S.Iyer, A.Rowstron, and P.Druschel. Squirrel: A decentralized peer-to-

peer web cache. In Proceedings of Principles of Distributed Computing’02,

2002.

[4] J. Kubiatowicz, D. Binder, Y. Chen, P. Eaton and et al., Oceanstore: An

architecture for global-scale persistent storage. In Proceedings of ACM

ASPLOS00, November, 2000.

[5] I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, and H.Balakrishnan. Chord:

a scalable peer-to-peer lookup service for internet applications. In Proceed-

ings of ACM SIGCOMM 2001, August 2001.

[6] A.Rowstron and P.Druschel. Pastry: scalable, decentralized object loca-

tion and routing for large-scale peer-to-peer systems. In Proceedings of the

International Conference on Distributed Systems Platforms(Middleware),

November 2001.

[7] B.Y.Zhao, J.Kubiatowicz, and A.Joseph. Tapestry: An infrastructure

for fault-tolerant wide-area location and routing. UCB Technical Report

UCB/CSD-01-114, 2001.

70

[8] S.Ratnasamy, P.Francis, M.Handley, R.Karp, and S.Shenker. A scalable

content-addressable network. In Proceedings of ACM SIGCOMM 2001,

2001.

[9] P. Druschel and A. rowstron. PAST: A large-scale, persistent peer-to-peer

storage utility. In Proceedings of HotOS VIII, May 2001.

[10] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area

cooperative storage with CFS. In Proceedings of SOSP 2001, Oct 2001.

[11] S. Saroiu et al. A measurement study of peer-to-peer file sharing systems.

In Proceedings of MMCN 2002, 2002.

[12] R. Bhagwan, K. Tati, Y. Cheng, S. Savage and G. M. Voelker. Total Re-

call: System Support for Automated Availability Management. In Pro-

ceedings of NSDI 2004, 2004.

[13] R. Bhagwan, S. Savage, and G. M. Voelker. Replication Strategies for

Highly Available Peer-to-peer Storage Systems. In Proceedings of FuDiCo,

June 2002.

[14] Z. Xu, R. Min and Y. Hu. Reducing Maintenance Overhead in DHT Based

Peer-to-Peer Algorithms. In Proceedings of P2P 2003, 2003.

[15] C. Blake and R. Rodrigues. High Availability, Scalable Storage, Dynamic

Peer Networks : Pick Two. In Proceedings of HotOS-IX, May 2003.

[16] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding Availability.

In Proceedings of IPTPS 03, 2003.

[17] L. Carcs-Erice, E. W. Biersack, P. Felber, K. W. Ross and G. Urvoy-

Keller. Hierarchical Peer-to-Peer Systems. In Proceedings of Euro-Par

2003, 2003.

71

[18] B. Yang and H. Garcia-Molina. Designing a Super-Peer Network. In Pro-

ceedings of ICDE 2003, 2003.

[19] Bittorent, http://bittorent.com

[20] Gnutella, http://gnutella.wego.com/, 2003.

[21] J. Liang, R. Kumar, and K.W. Ross. Understanding KaZaA.

http://cis.poly.edu/ ross/papers/UnderstandingKaZaA.pdf, 2004.

[22] E. Cohen and S. Shenker. Replication Strategies in Unstructured Peer-to-

Peer Networks. In Proceedings of SIGCOMM02, 2002.

[23] G. Utard and A. Vernois. Data Durability in Peer to Peer Storage Systems

In Proceedings of CCGrid 2004, 2004.

[24] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. Search and Replication in

Unstructured Peer-to-Peer Networks. In Proceedings of ICS 2002, 2002.

[25] J. Kangasharju, K. W. Ross and D. A. Turner. Optimal Content Repli-

cation in P2P Communities. manuscript, 2002.

[26] M. J. Freedman and D. Mazieres. Sloppy hashing and self-organizing clus-

ters. In Proceedings of IPTPS03, 2003.

[27] Y. Zhu and Y. Hu. Efficient, Proximity-Aware Load Balancing for DHT-

Based P2P Systems. IEEE TRANSACTION ON PARALLEL AND DIS-

TRIBUTED SYSTEMS, Vol 16, No 4, April 2005.

[28] L. Xiao, Z. Zhuang and Y. Liu. Dynamic Layer Management in Super-

peer Architectures. IEEE TRANSACTION ON PARALLEL ADN DIS-

TRIBUTED SYSTEMS, Vol 16, No 11, November 2005.

[29] P. Backx, T. Wauters, B. Dhoedt, and P. Demeester. A Comparison of

Peer-to-Peer Architectures. In Proceedings of Eurescom Summit, 2002.

72

[30] F.E. Bustamante and Y. Qiao. Friendships that Last: Peer Lifespan and

Its Role in P2P Protocols. In Proceedings of Int�l Workshop Web Content

Caching and Distribution, 2003.

[31] N. Daswani, H. Garcia-Molina, and B. Yang. Open Problems in Data-

Sharing Peer-to-Peer Systems. In Proceedings of Ninth International Con-

ference Database Theory, 2003.

[32] Z. Ge, D.R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley. Modeling

Peer-Peer File Sharing Systems. In Proceedings of IEEE INFOCOM, 2003.

[33] K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy, and J.

Zahorjan. Measurement, Modeling, and Analysis of a Peer-to-Peer File-

Sharing Workload. In Proceedings of 19th ACM SOSP, Oct. 2003.

[34] K. C. Hsiao and C. T. King. A Tree Model for Structured Peer-to-Peer

Protocols. In Proceedings of Third CCGRID, May 2003.

[35] R. J. Dunn, J. Zahorjan, S. D. Gribble and H. M. Levy. Presence-Based

Availability and P2P Systems. In Proceedings of P2P 2005, 2005.

[36] S. Rhea, D. Geels, T. Roscoe and J. Kubiatowicz. Handling Churn in

a DHT. In Proceedings of USENIX Annual Technical Conference, June

2004.

[37] Z. Xu, M. Mahalingam, and M. Karlsson. Turning Heterogeneity into an

Advantage in Overlay Routing. In Proceedings of IEEE INFOCOM, Apr.

2003.

[38] Z. Zhang, S. Shi, and J. Zhu. SOMO: Self-Organized Metadata Overlay

for Resource Management in P2P DHT. In Proceedings of Second IPTPS,

Feb. 2003.

73

[39] D.R. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms

for Peer-to-Peer Systems. In Proceedings of Third IPTPS, Feb. 2004.

74

��� �� �� ���

�
 ��	
�	�
 P���	
Æ�1
 ������ 7������Æ *���8�
 ����'�9�:R
��. &�;		 7�����qr ��5)�6�

"7�R
��. �
�sG 1
7�� 88Æ��
���		 ��#$/ 	
8��()�#�� t�<=�	�� sG��:; ������ �Ǳ�4uQ* >�"

'(�� �0�3�� v/4u./0���� ��:����� 'w��%��qr ��5)�6�"7�R
��. 'w��%���Æ �&#
�	e4 3�

x��0.���sG��:;������yz&���
�
�'�'(�0�3�����	
*��0��6�9�:R
��.n�{�|����Q*!�"

��*� ��	
�	 ���)�*�� ��+2�0��
'(t�<=�	�� t�7����� 1

��./0���� ��:�}~� 'w��%��, �		

.����	 'w��%��, 0��,1-�� 'w��%��, �
�� 9': 'w��%��qr ;1<��� ��5)�*�� 6�"7�R
��.

=���
8�����()�'(()�;�:./����
�����HI,�<=�
�129>.�12�Æ3
���v/�����:;*���5)�

6�"7�R
��. �0�3�� 3�<=�'�+�
 ����*�� 2�Æ�0��		 7��� 	
�Æ �129>.�12���� ��"qr ?@At�

��
�� ����'����		 ������ sG��:; ���0�� �
�'�9�:R
��. ,�?
(2/���
3#��Æ g�$��)�
�	B!C

9':, ��"DE+��#���*� �O?
	�� ?)���� ()�	
 ��	b/, �!4
 ��#������ $�#4u�� �129>.�12��� {�

|�:;
�����46� ���0�, F#GF#G+�'(\K���	�� YZ���;0� ()�HIJ, ��v/������ >�� >�?���80��		

_/@��, 0��()�*� ?@At�*� �&#������ ���, A@B�����5�
 ���	�� 3�����, �0�3�� �&#������ &�C'���� �}

()�, &�;		��#��
��"DJ
����� ,1-
��, �O?
	�� AB� �KL"�
 3�����, +�	���	�� FG,�3��
 	
@��,

��:	�� YZh�	
 $C���, �129>.�12�Æ ?�� 0.M$?*	NOP�
��:; ��5)�6�"7�R
��. ,�����D@E1

��

�0�3�� 1
���*0��
'(*���8��� 0���� 3
���v/7�������:;*� ��5)�6�"7�R
��. �129>.�12�Æ

FQ�@�# C*	��!9':, ���	�� ��?
��g��Æ ���@��9':, ?)���� 3�5�		+,G H-I~�9':, FG,�	�� 'w��%��

<�,1-9':, �0�3�� �
�3� >�� �
�		 3��~�9':, ,���cd@/��	�Æ AB_/ ���<�9':, �
�JKP� '(g�

0�� _/3
�9':, ?)���� ()�	
 ������, ��<=.RG�� ����		 ()����, 6�N
�
 2���3�
�� S�����9':,

J�#?
�� ?@At�+�'(����		 _/��"9':, �&#����
 ��#+�'(������ �����9':e4 3���&�9':, �0�3��

�&#����
+�46�<����,��K/#���#���*�t�1
L
�	����	v/,()P���	���		�Ǳ��ÆHI<="�C*	���,

�Æ
0�	�� ������9':, �������
 ;1<��� ��#�		9':, ������+��		 MTN+�"��)� �����, 0��()���� ,�-2�

+�46�D��?
	
+,G��	b/,����
A��i�0�1
U)V	��'((����!'w��v/$%���,������#?
,-	��

���_/, Q�&�
�� 2�sG�
1
 &��'(>��#� ��:	�� 1
��, �
 &�;		 7�����:; ��5)��Æ ���W�X���

6�"7�R
��.

��FQ������Æ ��#$/ ���%�&��� '�+�
 ./��� �!	�'�, S�����, :fb/, �		���(�� FQ�E�5e4��!'(

&�;		 12N�������:; ��5)��Æ ������ FQ���OR
��.

1
"DG�Æ JK3� �P�	
 Æ�1
 3�"�� �0*�
 �
�
Y�� ������ sG�Æ 3�<=��
�'�9�:R
��. �
�

sG,F�G2������LM���������#3��Q4#�
78P�Q*?@At�+���������!	*�>��U)V���		sG*��

�0�3�� ��(�
0��
'(2�R����+�
 *�Q*0����)�;0�+��		 t�&�%��, ��5)���OR
��. h�3� ���

����Q4#�
78������UVh�Z�[Æ�1
./Y��()����>�Y����:;'(��H���		������FQ���OR
��.

cd?
'(
�����UVg��� ��!"���LM�Æ ;12�� ��./ ������ [��
���� 0���� "������
Ǳ��e4 �0�

3�� 9�\�V	�� �
HI��)�# ��62�0��
�		 "��&�%��qr*� ��5)�6�"7�R
��. cdQ��Æ ������ 12N

1
7�����:;*���5)�6�"7�R
��.g�1
F��%���,�0*���UVP�9��5��UVP�	
]��UVP�,��ij���

UV, �0�3�� h� �&S���� P�*�� *�Q*0�'(�Ǳ�4u./Y��)�;0�+��		 +�P�Q* P��Æ �� AB�!

0�� I�����, 5��1
, �O1
��:;)�;0�	�����		 ���e4 ��5)�	�����		 ������ FQ���OR
��.

�� ��� ��

�� �
� : 6�� �!	 T@B

����������� : 19768Æ� 05�	
 15��#

���
�� �� : Mokpo, Republic of Korea

E-mail���� : kbkim@sslab.kaist.ac.kr

��� ���

1994. 3. – 1999. 2. 	��HIJe4��!	
L̂���� ��!t�e4
�	 FQ�	
7�UFQ�"�?@A��!e4 (B.S.)

1999. 3. – 2001. 2. 	��HIJe4��!	
L̂����FQ�"�FQ�J����!e4FQ�	
7�UFQ�"�?@A��!FQ�?@A (M.S.)

2001. 3. – 2007. 2. 	��HIJe4��!	
L̂����FQ�"�FQ�J����!e4FQ�	
7�UFQ�"�?@A��!FQ�?@A (Ph.

D)

��Æ ���

1999. 2. – 1999. 11. Development of Enterprise Web Application Server

1999. 7. – 2000. 6. Non DEC based Distributed PC Monitor with TxRPC

2000. 3. – 2000. 12. Development of real-time OS disk file system

2000. 10. – 2001. 9. Development of the network management system

2001. 4. – 2002. 3. Development of the web-based distributed system for the

network management

2004. 3. – 2004. 12. Data Synchronization and Transformation for Wireless

Mobile Terminals

2005. 3. – 2005. 12. Wearable Ubiquitous Computing

�������	
��

1. Kyungbaek Kim and Daeyeon Park, Least Popularity-per-Byte Replace-

ment Algorithm for a Proxy Cache, In Proceedings of 8th International

Conference on Parallel and Distributed Systems (ICPADS 2001), pages

780-788, June 26-29, 2001.

2. Woo Hyun Ahn, Kyungbaek Kim, Yong-Jin Choi, and Daeyeon Park,

DFS:A De-fragmented File System, In Proceedings of 10th IEEE/ACM

International Symposium on Modeling, Analysis and Simulation of Com-

puter and Telecommunication Systems (MASCOTS 2002), pages 71-80,

October 12-16, 2002.

3. Kyungbaek Kim and Daeyeon Park, Subway : Peer-To-Peer Cluster-

ing of Clients for Web Proxy, In Proceedings of The 2003 International

Conference on Parallel and Distributed Processing Techniques and Appli-

cations (PDPTA 2003), pages 1683-1688, June 23-26, 2003.

4. Kyungbaek Kim, Woo Jin Kim and Daeyeon Park, Efficient and Scal-

able Client-Clustering for Proxy Cache, In Proceedings of 6th IEEE Inter-

national Conference on High Speed Networks and Multimedia Communi-

cations (HSNMC 2003), pages 83-92, July 23-25, 2003 (LNCS).

5. Kyungbaek Kim and Daeyeon Park, Efficient and Scalable Client Clus-

tering for Web Proxy Cache, IEICE Transactions on Information and Sys-

tems, Vol.E86-D No.9 pp.1577-1585, SEP, 2003.

6. Woo Jin Kim, Kyungbaek Kim, Jaesun Han, Keuntae Park and Daeyeon

Park, Thread-Aware Garbage Collection for Server Applications, In Pro-

ceedings of 2004 International Symposium of Applications and the Inter-

net (SAINT 2004), pages 81-87, January 26-30, 2004.

7. Kyungbaek Kim and Daeyeon Park, Caching large files by using p2p

based client-cluster for web proxy cache, In Proceedings of IASTED Inter-

national Conference on Parallel and Distributed Computing and Networks

2004 (PDCN 2004), page 643-648, February 17-19, 2004.

8. Byoung-Jip Kim, Kyungbaek Kim and Daeyeon Park, The Content-

Aware Caching For Cooperative Transcoding Proxies, In Proceedings of

International Conference on Information Networking 2005 (ICOIN 2005

), pages 766-775, January 31 - February 2, 2005 (LNCS).

9. Kyungbaek Kim and Daeyeon Park, Efficient Caching Policies for the

P2P Web Caching, In Proceeding of International Conference of Com-

putational Science and its Applications 2005 (ICCSA 2005), May 9-12,

2005

10. Kyungbaek Kim and Daeyeon Park, Efficient Resource Management for

the P2P web Caching, In Proceedings of Service Assurance with Partial

and Intermittent Resources Conference (ACIT/SAPIR/ELETE 2005),

pp. 382-387, July 17 - 20, 2005.

11. Kyungbaek Kim and Daeyeon Park, Mobile NodeID based P2P Al-

gorithm for the Heterogeneous Network, In Proceedings of International

Conference on Embedded Software and Systems 2005 (ICESS 2005), pp.

485-495, December 16-18, 2005.

12. Kyungbaek Kim and Daeyeon Park, Heterogeneity aware P2P algo-

rithm by using mobile nodeID, In Proceedings of International Conference

on Information Networking 2006 (ICOIN 2006), pp. 975-984, January

16-19, 2006 (LNCS).

13. Kyungbaek Kim and Daeyeon Park, Reducing Data Replication Over-

head in DHT Based Peer-to-Peer System, In Proceedings of International

Conference on High Performance Computing and Communications 2006

(HPCC 2006), pp.915-924 , September 13-15, 2006 (LNCS).

14. Kyungbaek Kim and Daeyeon Park, Reducing Outgoing Traffic of Proxy

Cache by using Client-Cluster, Journal Of Communications and Networks,

Vol.8 No.3 pp.330-338, SEP, 2006.

15. Hyunbin Lee, YongJoo Song, Kyungbaek Kim, Donggook Kim and

Daeyeon Park, CriStore : Dynamic Storage System for Heterogeneous

Devices in Offsite Ubiquitous Communities, In Proceedings of The 22nd

Annual ACM Symposium on Applied Computing (SAC 2007), March 11

- 15, 2007.

16. Kyungbaek Kim, and Daeyeon Park, Efficient and tailored resource

management for the P2P web caching, IEICE Transactions on Information

and Systems, Accept for Publication. (JAN 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

